Skip to main content

Advertisement

Log in

Identifying priority areas for landscape connectivity for three large carnivores in northwestern Mexico and southwestern United States

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Large carnivores are crucial to ecosystem functioning, as they enhance the biodiversity of the native communities in which they live. However, most large carnivores are threatened with extinction resulting from human persecution, habitat encroachment, and the loss of habitat connectivity.

Objective

To identify areas that favor landscape connectivity for three large carnivores within and between northwestern Mexico and southwestern United States.

Methods

We performed a habitat suitability analysis for puma (Puma concolor), Mexican wolf (Canis lupus baileyi), and black bear (Ursus americanus) by combining ecological niche modeling with anthropogenic variables to identify high-quality habitat patches to be connected. We also developed a connectivity analysis to identify smaller suitable habitat patches within connecting corridors to evaluate their contributions to connecting larger populations.

Results

We found existing large, high-quality areas in Mexico and the United States that could connect through smaller patches. Likewise, we identified pinch-point areas, patches and links with high centrality, indicating that some biological corridors promote connectivity among the most extensive suitable patches.

Conclusions

It is possible to maintain and even enhance adequate landscape connectivity between major suitable habitat patches for the three large carnivores, within and between their distributional areas in Mexico and the United States. In this regard, decision-makers, academia, and civil society need to strengthen their bonds to reduce the pressure on these carnivores and help authorities improve binational plans and agreements to consolidate conservation actions and landscape connectivity between Mexico and the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Google Scholar 

  • Albert C, Luque GM, Courchamp F (2018) The twenty most charismatic species. PLoS ONE 13(7):e0199149

    PubMed  PubMed Central  Google Scholar 

  • Andrén H (1997) Habitat fragmentation and changes in biodiversity. Ecol Bull 46:171–181

    Google Scholar 

  • Araiza M, Carrillo L, List R, López-González CA, Martínez-Meyer E, Martínez-Gutiérrez PG, Moctezuma O, Sánchez-Morales NE, Servín J (2012) Consensus on criteria for potential areas for wolf reintroduction in Mexico. Conserv Biol 26(4):630–637

    PubMed  Google Scholar 

  • Atwood TC, Young JK, Beckmann JP, Breck SW, Fike J, Rhodes OE Jr, Bristow KD (2011) Modeling connectivity of black bears in a desert sky island archipelago. Biol Conserv 144:2851–2862

    Google Scholar 

  • Azuela A, Mussetta P (2009) Algo más que el ambiente: conflictos sociales en tres áreas naturales protegidas de México. Rev Cienc Soc segunda época 16:191–215

    Google Scholar 

  • Beier P, Majka D, Jenness J (2007) Conceptual steps for designing wildlife corridors. http://www.corridordesign.org/. Accessed 1 Sept 2017

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    PubMed  Google Scholar 

  • Bell G, Baumgartner J, Humke J, Laurenzi A, McCarthy P, Mehlhop P, Rich K, Silbert M, Smith E, Spicer B, Sullivan T, Yanoff S (1999) Ecoregional conservation analysis of the Arizona—New Mexico mountains. The Nature Conservancy, Santa Fe

    Google Scholar 

  • Belote RT, Dietz MS, McRae BH, Theobald DM, McClure ML, Irwin GH, McKinley PS, Gage JA, Aplet GH (2016) Identifying corridors among large protected areas in the United States. PLoS ONE 11:e0154223

    PubMed  PubMed Central  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Google Scholar 

  • Brown DE (1983) The wolf in the Southwest: The making of an endangered species. University of Arizona Press, Tucson

    Google Scholar 

  • Brown WM, Parsons DR (2001) Restoring the Mexican gray wolf to the mountains of the Southwest. In: Maehr DS, Noss RF, Larkin JL (eds) Large mammal restoration, ecological and sociological challenges in the 21st Century. Island Press, Washington

    Google Scholar 

  • Carroll C, Phillips MK, Lopez-Gonzalez CA, Schumaker NH (2006) Defining recovery goals and strategies for endangered species: the wolf as a case study. Bioscience 56:25–37

    Google Scholar 

  • Carroll C, McRae B, Brookes A (2012) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv Biol 26:78–87

    PubMed  Google Scholar 

  • Carroll C, Fredrickson RJ, Lacy RC (2014) Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf. Conserv Biol 28:76–86

    PubMed  Google Scholar 

  • CCI-LC (2015) Land Cover CCI. Product User Guide Ver. 2. http://maps.elie.ucl.ac.be/CCI/viewer/

  • Chávez-Díaz M, Prunés-Soto E (2018) Bases biofísicas para el ordenamiento ecológico de los 12 municipios de influencia del Proyecto Tarahumara Sustentable. Tarahumara Sustentable. http://www.tarahumarasustentable.mx/base-cientifica.html. Accessed 15 Dec 2019

  • Cherry S (1996) A comparison of confidence interval methods for habitat use-availability studies. J Wildl Manag 60(3):653–658

    Google Scholar 

  • Choate DM, Longshore KM, Thompson DB (2018) Cougar dispersal and natal homing in a desert environment. West N Am Nat 78(2):221–235

    Google Scholar 

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281

    PubMed  PubMed Central  Google Scholar 

  • CONABIO (2016) Sitios de atención prioritaria para la conservación de la biodiversidad, escala: 1:1000000. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://geoportal.conabio.gob.mx/metadatos/doc/html/sap_gw.html. Accessed 13 Feb 2020

  • CONABIO (2019) Sexto informe nacional de México ante el convenio sobre la diversidad biológica. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.biodiversidad.gob.mx/planeta/internacional/cbd/sexto-informe. Accessed 15 Feb 2020

  • CONANP (2020) México logra importantes avances en la recuperación del lobo Mexicano. Comisión Nacional de Áreas Naturales Protegidas. https://www.gob.mx/conanp/prensa/mexico-logra-importantes-avances-en-la-recuperacion-del-lobo-mexicano. Accessed 11 Jan 2020

  • Correa Ayram C, Mendoza M, Etter A, Pérez-Salicrup D (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr 40(1):7–37

    Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014a) Temperatura media anual en México (1910–2009), escala: 1:1000000, modificado por CONABIO (2015). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://geoportal.conabio.gob.mx/metadatos/doc/html/tman13gw.html. Accessed 10 Jan 2020

  • Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014b) Precipitación anual en México (1910–2009), escala: 1:1000000, modificado por CONABIO (2015). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://geoportal.conabio.gob.mx/metadatos/doc/html/preanu13gw.html. Accessed 10 Jan 2020

  • Culver M (2016) Jaguar surveying and monitoring in the United States (ver. 1.1, November 2016): U.S. Geological Survey Open-File Report 2016–1095, p 228. https://doi.org/10.3133/ofr20161095

  • Currier MJP (1983) Felis concolor. Mamm Spec 200:1–7

    Google Scholar 

  • Dallas T, Decker RR, Hastings A (2017) Species are not most abundant in the centre of their geographic range or climatic niche. Ecol Lett 20:1526–1533

    PubMed  Google Scholar 

  • Descroix L, Gonzalez Barrios JL, Estrada Avalos J (2004) La Sierra Madre Occidental. Una fuente de agua amenazada, INIFAP-IRO. Gómez Palacio, Durango

    Google Scholar 

  • Dickson BG, Beier P (2002) Home range and habitat selection by adult cougars in southern California. J Wildl Manag 66(4):1235–1245

    Google Scholar 

  • Dickson BG, Roemer GW, McRae BH, Rundall JM (2013) Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States. PLoS ONE 8(12):e81898

    PubMed  PubMed Central  Google Scholar 

  • Doan-Crider D, Villalon-Moreno H, De SalgadoLos Santos G (2009) Mexico black bear status report. In: Lackey C, Beausoleil RA (eds) Western black bear workshop. Reno, Nevada, p 60

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Márquez JR, Gruber B, Lafourcade B, Leitao PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Scröeder B, Ak S, Zurell D, Lauthenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Google Scholar 

  • Dutta T, Sharma S, Roy PS, McRae B, DeFries R (2016) Connecting the dots: mapping habitat connectivity for tigers in central India. Reg Environ Change 16:53–67

    Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Didik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Google Scholar 

  • Espinosa-Flores ME, Lara-Díaz NE, López-González CA (2012) Tamaño poblacional del oso negro (Ursus americanus) en dos islas del cielo del Noreste de Sonora, México. Therya 3:403–415

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Google Scholar 

  • Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100:125–136

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fleischner T, Hanna D, Floyd M (2017) A preliminary description of the Mogollon Highlands Ecoregion. Plant Press 40(2):3–6

    Google Scholar 

  • Flesch AD, Epps CW, Cain JW III, Clark M, Krausman PR, Morgart JR (2010) Potential effects of the United States-Mexico border fence on wildlife. Conserv Biol 24:171–181

    PubMed  Google Scholar 

  • Freeman B, Roehrdanz PR, Peterson AT (2019) Modeling endangered mammal species distributions and forest connectivity across the humid upper Guinea lowland rainforest of west Africa. Biodivers Conserv 28:671–685

    Google Scholar 

  • Gergely KJ, Boykin KG, McKerrow AJ, Rubino MJ, Tarr NM, Williams SG (2019) Gap analysis project (GAP) terrestrial vertebrate species richness maps for the conterminous U.S.: U.S. geological survey scientific investigations report 2019–5034, p 99. https://doi.org/10.3133/sir20195034

  • González-Saucedo ZY, López-González CA (2011) Functional connectivity for pumas in central Mexico. In: Williams J, Robinson H, Sweanor L (eds) 10th mountain lion workshop. Bozeman, Montana, pp 146–168

    Google Scholar 

  • Gonzalez SC, Soto-Centeno JA, Reed DL (2011) Population distribution models: species distributions are better modeled using biologically relevant data partitions. BMC Ecol 11:20

    PubMed  PubMed Central  Google Scholar 

  • González-Bernal A, Lara-Díaz NE, Coronel-Arellano H, López-González CA (2011) Mountain lion (Puma concolor) population status, and biological corridors in Sierra San Luis, Sonora México. In: Williams J, Robinson H, Sweanor L (eds) 10th Mountain Lion Workshop. Bozeman, Montana, pp 169–184

    Google Scholar 

  • González-Elizondo MS, González-Elizondo M, Tena-Flores JA, Ruacho-González L, López-Enríquez IL (2012) Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Bot Mex 100:351–403

    Google Scholar 

  • Graves T, Chandler RB, Royle JA, Beier P, Kendall KC (2014) Estimating landscape resistance to dispersal. Landsc Ecol 29(7):1201–1211

    Google Scholar 

  • Greenwald N, Segee B, Curry T, Bradley C (2017) A wall in the wild. The disastrous impacts of Trump’s border wall on wildlife. Center for Biological Diversity. https://www.biologicaldiversity.org. Accessed 15 Feb 2020

  • Griffith GE, Omernik JM, Johnson CB, Turner DS (2014) Ecoregions of Arizona (poster): U.S. geological survey open-file report 2014-1141, with map, scale 1:1325000. https://doi.org/10.3133/ofr20141141. Accessed 12 Jan 2020

  • Hall ER (1981) The mammals of North America, 2nd edn. Wiley, New York

    Google Scholar 

  • Heffelfinger JR, Nowak RM, Paetkau D (2017) Clarifying historical range to aid recovery of the Mexican wolf. J Wildlife Manag 81(5):766–777

    Google Scholar 

  • Hewitt DG, Doan-Crider D (2008) Metapopulations, food and people: bear management in northern Mexico. In: Fulbright TE, Hewitt DG (eds) Wildlife science: linking ecological theory and management applications. CRC Press, Boca Raton, pp 165–181

    Google Scholar 

  • Hilty J, Keeley ATH, Lidicker W, Merenlender A (2019) Corridor ecology: linking landscapes for biodiversity conservation and climate adaptation, 2nd edn. Island Press, Washington

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Google Scholar 

  • Ingenloff K, Hensz C, Anamza T, Barve V, Campbell LP, Cooper JC, Komp E, Jimenez L, Olson KV, Osorio-Olvera L, Owens HL, Peterson AT, Samy AM, Simões M, Soberón J (2017) Predictable invasion dynamics in North American populations of the Eurasian Collared Dove Streptopelia decaocto Proc R Soc B 284:20171157.

    PubMed  PubMed Central  Google Scholar 

  • Interagency Field Team (2005) Mexican wolf Blue Range reintroduction project 5 year review: technical component. Arizona Game and Fish Department, New Mexico Department of Game and Fish, USDA–APHIS Wildlife Services, USDA Forest Service, US Fish and Wildlife Service, White Mountain Apache Tribe. https://www.fws.gov/southwest/es/mexicanwolf. Accessed 12 Oct 2018

  • IPBES (2019) Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Brondizio ES, Settele J, Díaz S, Ngo HT (eds). IPBES Secretariat, Bonn, Germany. https://ipbes.net/global-assessment. Accessed 12 April 2020

  • Jackson CR, Marnewick K, Lindsey PA, Røskaft E, Robertson MP (2016) Evaluating habitat connectivity methodologies: a case study with endangered African wild dogs in South Africa. Landsc Ecol 31:1433–1447

    Google Scholar 

  • Karelus DL, McCown JW, Scheick BK, van de Kerk M, Oli MK (2016) Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast Nat 15:346–364

    Google Scholar 

  • Keeley ATH, Beier P, Gagnon JW (2016) Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landsc Ecol 31:2151–2162

    Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91:944–950

    PubMed  Google Scholar 

  • Lara-Díaz N, López-González CA, Coronel-Arellano H, Gonzalez Bernal A (2013) Black bear population and connectivity in the Sky Islands of Mexico and the United States. In: Gottfried GJ, Ffolliott PF, Gebow BS, Eskew LG, Collins LC (eds) Merging science and management in a rapidly changing world: Biodiversity and management of the Madrean Archipelago III and 7th conference on research and resource management in the Southwestern deserts. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Forest Service, Rocky Mountain Research Station, Tucson, pp 263–268

    Google Scholar 

  • LaRue MA, Nielsen CK (2008) Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol Model 212:372–381

    Google Scholar 

  • Lasky JR, Jetz W, Keitt TH (2011) Conservation biogeography of the US-Mexico border: a transcontinental risk assessment of barriers to animal dispersal. Divers Distrib 17:673–687

    Google Scholar 

  • Lawler J, White D, Sifneos J, Master L (2003) Rare species and the use of indicator groups for conservation planning. Conserv Biol 17:875–882

    Google Scholar 

  • Lesilau F, Fonck M, Gatta M, Musyoki C, van ‘t Zelfde M, Persoon GA, Musters KCJ, de Snoo GR, de Longh HH (2018) Effectiveness of a LED flashlight technique in reducing livestock depredation by lions (Panthera leo) around Nairobi National Park, Kenya. PLoS ONE 13:e0190898

    PubMed  PubMed Central  Google Scholar 

  • Lira-Noriega A, Manthey JD (2014) Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68:1082–1093

    PubMed  Google Scholar 

  • List R (2007) The impacts of the border fence on wild mammals. In: Cordova A, De la Parra CA (eds) Barrier to our shared environment: the border wall between Mexico and the United States. SEMARNAT, Instituto Nacional de Ecología, El Colegio de la Frontera Norte, Ciudad de México, pp 77–86

    Google Scholar 

  • Logan KA, Sweanor LL (2001) Desert pumas: evolutionary ecology and conservation of an enduring carnivore. Island press, Washington

    Google Scholar 

  • López-Hoffman L, Varady RG, Flessa KW, Balvanera P (2010) Ecosystem services across borders: a framework for transboundary conservation policy. Front Ecol Environ 8:84–91

    Google Scholar 

  • Maguire B (1973) Niche response structure and the analytical potentials of its relationship to the habitat. Am Nat 107:213–246

    Google Scholar 

  • Majka D, Beier B, Jenness J (2007) Corridor designer ArcGIS toolbox tutorial. http://www.corridordesign.org. Accessed 12 June 2019

  • Manthey JD, Campbell LP, Saupe EE, Soberón J, Hensz CM, Myers CE, Owens HL, Ingenloff K, Peterson AT, Barve N, Lira-Noriega A, Barve V (2015) A test of niche centrality as a determinant of population trends and conservation status in threatened and endangered North American birds. Endanger Species Res 26:201–208

    Google Scholar 

  • Marshall R, List M, Enquist C (2006) Ecoregion-based conservation assessments of the Southwestern United States and Northwestern Mexico: a geodatabase for six ecoregions, including the Apache Highlands, Arizona-New Mexico Mountains, Colorado Plateau, Mojave Desert, Sonoran Desert, and South. The Nature Conservancy, Tucson

    Google Scholar 

  • Martínez-Gutiérrez PG, Martínez-Meyer E, Palomares F, Fernández N (2018) Niche centrality and human influence predict rangewide variation in population abundance of a widespread mammal: the collared peccary (Pecari tajacu). Divers Distrib 24:103–115

    Google Scholar 

  • Martínez-Meyer E, Peterson AT, Servín JI, Kiff LF (2006) Ecological niche modelling and prioritizing areas for species reintroductions. Oryx 40:411–418

    Google Scholar 

  • Martínez-Meyer E, Díaz-Porras D, Peterson AT, Yáñez-Arenas C (2013) Ecological niche structure and rangewide abundance patterns of species. Biol Lett 9:20120637

    PubMed  PubMed Central  Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015a) Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6(4):59

    Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015b) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landsc Ecol 30(8):1405–1420

    Google Scholar 

  • McCain EB, Childs JL (2008) Evidence of resident jaguars (Panthera onca) in the southwestern United States and the implications for conservation. J Mammal 89:1–10

    Google Scholar 

  • McCallum JW, Rowcliffe JM, Cuthill IC (2014) Conservation on international boundaries: the impact of security barriers on selected terrestrial mammals in four protected areas in Arizona, USA. PLoS ONE 9(4):e93679

    PubMed  PubMed Central  Google Scholar 

  • McRae BH (2012) Pinchpoint mapper connectivity analysis software. The Nature Conservancy. https://circuitscape.org/linkagemapper. Accessed 9 June 2019

  • McRae BH, Kavanagh D (2011) Linkage mapper connectivity analysis software. The Nature Conservancy. https://circuitscape.org/linkagemapper. Accessed 15 May 2019

  • McRae BH, Beier P, Dewald LE, Huynh LY, Keim P (2005) Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma. Mol Ecol 14:1965–1977

    CAS  PubMed  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    PubMed  Google Scholar 

  • Meir E, Kareiva PM (1998) Contributions of spatially explicit landscape models to conservation biology. In: Fiedler PL, Kareiva PM (eds) Conservation biology. Springer, Boston, pp 497–507

    Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10):1058–1069

    Google Scholar 

  • Mexican Wolf Interagency Field Team (2017) Mexican wolf reintroduction project monthly update, january 1–31, 2017. U.S. Fish and Wildlife Service. https://www.fws.gov/southwest/es/mexicanwolf. Accessed 10 Nov 2019

  • Mexican Wolf Interagency Field Team (2020) Mexican wolf recovery program monthly update, july1-31, 2020. U.S. Fish and Wildlife Service. https://www.azgfd.com/wildlife/speciesofgreatestconservneed/mexicanwolves. Accessed 27 Aug 2020

  • Miller JRB, Stoner KJ, Cejtin MR, Meyer TK, Middleton AD, Schmitz OJ (2016) Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildl Soc Bull 40(4):806–815

    Google Scholar 

  • Montenegro JA, Acosta A, Reimer JD (2014) Havistat© v2.2: application to estimate preference for habitat and resources. Univ Sci 19(3):333–337

    Google Scholar 

  • Moreira-Arce D, Ugarte CS, Zorondo-Rodríguez F, Simonetti JA (2018) Management tools to reduce carnivore–livestock conflicts: current gap and future challenges. Rangel Ecol Manag 71:389–394

    Google Scholar 

  • Nowak RM (1979) North American Quaternary Canis Monogr Mu Nat Hist 6:1–154

    Google Scholar 

  • Nuñez TA, Lawler JJ, Mcrae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27:407–416

    PubMed  Google Scholar 

  • Onorato DP, Hellgren EC, Van Den Bussche RA, Doan-Crider DL, Skiles JR Jr (2007) Genetic structure of American black bears in the desert southwest of North America: conservation implications for recolonization. Conserv Genet 8:565–576

    Google Scholar 

  • Osorio-Olvera L, Yañez-Arenas C, Martínez-Meyer E, Peterson AT (2020) Relationships between population densities and niche-centroid distances in North American birds. Ecol Lett 23:555–564

    PubMed  Google Scholar 

  • Pelletier D, Clark M, Anderson MG, Rayfield B, Wulder MA, Cardille JA (2014) Applying circuit theory for corridor expansion and management at regional scales: tiling, pinch points, and omnidirectional connectivity. PLoS ONE 9(1):e84135

    PubMed  PubMed Central  Google Scholar 

  • Peters R, Ripple WJ, Wolf C, Moskwik M, Carreón-Arroyo G, Ceballos G, Córdova A, Dirzo R, Ehrlich PR, Flesch AD, List R (2018) Nature divided, scientists united: US–Mexico border wall threatens biodiversity and binational conservation. BioSci 24:171–176

    Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Prunés-Soto E, Rodríguez-Estrada CM (2018) Priorización de sitios para la conservación de biodiversidad y servicios ecosistémicos e identificación de sus amenazas en la Sierra Tarahumara. Tarahumara Sustentable. http://www.tarahumarasustentable.mx/base-cientifica.html. Accessed 15 Dec 2019

  • Puko BT (2020) The environmental battle over the Mexican border wall. The Wall Street Journal. https://www.wsj.com/articles/the-environmental-battle-over-the-mexican-border-wall-11581625154. Accessed 15 Feb 2020

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landsc Ecol 25:1547–1560

    Google Scholar 

  • R Development Core Team R (2016) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org. Accessed 12 Aug 2016

  • Ray J, Redford KH, Steneck R, Berger J (2005) Large carnivores and the conservation of biodiversity. Island Press, Washington

    Google Scholar 

  • Reveal (2017) U.S.-Mexico border fence shapefile (open database license). The Center for Investigative Reporting and OpenStreetMap contributors. https://github.com/cirlabs/border_fence_map. Accessed 10 Feb 2020

  • Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484

    PubMed  Google Scholar 

  • Robles MD, Turner DS, Haney JA (2017) A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river. PLoS ONE 12(11):e0187875

    PubMed  PubMed Central  Google Scholar 

  • Rorabaugh JC, Schipper J, Avila-Villegas S, Lamberton-Moreno JA, Flood T (2020) Ecology of an ocelot population at the northern edge of the species’ distribution in northern Sonora. Mexico PeerJ 8:e8414

    PubMed  Google Scholar 

  • Rosas-Rosas OC, Valdez R (2010) The role of landowners in jaguar conservation in Sonora, Mexico. Conserv Biol 24:366–371

    PubMed  Google Scholar 

  • Rothley K (2005) Finding and filling the “cracks” in resistance surfaces for least-cost modeling. Ecol Soc 10(1):4

    Google Scholar 

  • SCBD (2005) Handbook of the convention on biological diversity including its Cartagena protocol on biosafety, 3rd edn. CBD and UNEP, Montreal

    Google Scholar 

  • SCDB (2000) Protocolo de Cartagena sobre seguridad de la biotecnología del convenio sobre la diversidad biológica: texto y anexos. Secretaría del Convenio sobre la Diversidad Biológica, Montreal

    Google Scholar 

  • SCDB (2011) Protocolo de Nagoya sobre acceso a los recursos genéticos y participación justa y equitativa en los beneficios que se deriven de su utilización al convenio sobre la diversidad biológica: texto y anexo. Convenio sobre la Diversidad Biológica Naciones Unidas, Montreal

    Google Scholar 

  • Schneider MF (2001) Habitat loss, fragmentation and predator impact: spatial implications for prey conservation. J Appl Ecol 38:720–735

    Google Scholar 

  • SEMARNAT (2004) Degradación del suelo en la República Mexicana, escala 1:250000. Secretaría de Medio Ambiente y Recursos Naturales. http://www.conabio.gob.mx/informacion/gis/. Accessed 17 June 2019

  • SEMARNAT (2010) Norma Oficial Mexicana NOM 059-SEMARNAT-2010. Protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, Segunda Sección, México

    Google Scholar 

  • Sharma LK, Mukherjee T, Saren PC, Chandra K (2019) Identifying suitable habitat and corridors for Indian grey wolf (Canis lupus pallipes) in Chotta Nagpur Plateau and Lower Gangetic Planes: a species with differential management needs. PLoS ONE 14(4):e0215019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton PH, Lehmkuhl JF (2001) Using weighted distance and least-cost corridor analysis to evaluate regional-scale large carnivore habitat connectivity in Washington. In: Irwin CL, Garrett P, McDermott KP (eds) Proceedings of the 2001 international conference on ecology and transportation. Center for Transportation and the Environment, North Carolina State University, Raleigh, pp 583–594

  • Soberón J, Peterson AT, Osorio-Olvera L (2018) A comment on “species are not most abundant in the centre of their geographic range or climatic niche.” Rethink Ecol 3:13–18

    Google Scholar 

  • Sweanor LL, Logan KA, Hornocker MG (2000) Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv Biol 14:798–808

    Google Scholar 

  • Taylor DP, Fahrig L, With K (2006) Landscape connectivity: a return to the basics. In: Crooks KR, Sanjayan M (eds) Conservation biology. Cambridge University Press, Cambridge, pp 29–43

    Google Scholar 

  • Toews M, Juanes F, Burton AC (2018) Mammal responses to the human footprint vary across species and stressors. J Environ Manag 217:690–699

    Google Scholar 

  • Trethowan PD, Robertson MP, McConnachie AJ (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77:137–146

    Google Scholar 

  • Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17:1491–1499

    Google Scholar 

  • United States (1983) The Endangered Species Act as amended by Public Law 97–304 (the Endangered Species Act amendments of 1982). U.S. Government Printing Office, Washington

    Google Scholar 

  • Ureña-Aranda CA, Rojas-Soto O, Martínez-Meyer E, Yáñez-Arenas C, Landgrave Ramírez R, Espinosa de los Monteros A (2015) Using range-wide abundance modeling to identify key conservation areas for the micro-endemic Bolson Tortoise (Gopherus flavomarginatus). PLoS ONE 10(6):e0131452

    PubMed  PubMed Central  Google Scholar 

  • USFWS (2014) Environmental impact statement for the proposed revision to the regulations for the nonessential experimental population of the Mexican wolf (Canis lupus baileyi). U.S. Fish and Wildlife Service. https://www.fws.gov/southwest/es/mexicanwolf. Accessed 12 Aug2020

  • USFWS (2017) Mexican wolf recovery plan, first revision. Region 2. U.S. Fish and Wildlife Service. https://www.fws.gov/southwest/es/mexicanwolf. Accessed 5 Nov 2019

  • Varas-Nelson AC (2007) Black bears blocked by the border. In: Cordova A, De la Parra CA (eds) A barrier to our shared environment: the border fence between the United States and Mexico. Secretariat of the Environment and Natural. Resources-National Institute of Ecology-El Colegio de la Frontera Norte-Southwest Consortium for Environmental Research and Policy, México, pp 87–92

    Google Scholar 

  • Varas-Nelson AC (2010) Conservation genetics of black bears in Arizona and Northern México. Dissertation. University of Arizona

  • Vickers TW, Sanchez JN, Johnson CK, Morrison SA, Botta R, Smith T, Cohen BS, Huber PR, Ernest HB, Boyce WM (2015) Survival and mortality of pumas (Puma concolor) in a fragmented, urbanizing landscape. PLoS ONE 10(7):e0131490

    PubMed  PubMed Central  Google Scholar 

  • Wade AA, Mckelvey KS, Schwartz MK (2015) Resistance-surface-based wildlife conservation connectivity modeling: summary of efforts in the United States and guide for practitioners. USDA Forest Service, General Technical Report RMRS-GTR-333. Fort Collins, CO

  • Warshall P (1995) The Madrean Sky Island Archipelago: a planetary overview. In: DeBano L, Ffolliott PF, Ortega-Rubio A, Gottfried GJ, Hamre RH, Edminster CB (eds) Biodiversity and management of the Madrean Archipelago: the Sky Islands of southwestern United States and northwestern Mexico. General technical report RM-GTR-264. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, p 669

  • Warshall P (2013) When will female jaguars cross the border? Socio-demographics of the northern jaguar. In: Gottfried GJ, Ffolliott PF, Gebow BS, Eskew LG (eds) Merging science and management in a rapidly changing world: Biodiversity and management of the Madrean Archipelago III and 7th conference on research and resource management in the southwestern deserts. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station., Fort Collins, CO, pp 87–90

  • Watson DM, Doerr VAJ, Banks SC, Driscoll DA, Van Der Ree R, Doerr ED, Sunnucks P (2017) Monitoring ecological consequences of efforts to restore landscape-scale connectivity. Biol Conserv 206:201–209

    Google Scholar 

  • Woodroffe R (2000) Predators and people: using human densities to interpret declines of large carnivores. Anim Conserv 3:165–173

    Google Scholar 

  • Yañez-Arenas C, Martínez-Meyer E, Mandujano S, Rojas-Soto O (2012) Modelling geographic patterns of population density of the white-tailed deer in central Mexico by implementing ecological niche theory. Oikos 121:2081–2089

    Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Google Scholar 

Download references

Acknowledgements

ZGS thanks the Ph.D. Program in Sustainability Sciences of the National Autonomous University of Mexico (UNAM). We thank Luis Osorio-Olvera (UNAM) and Oscar Gómez Godinez (CONABIO) for help with model implementation, Angela Cuervo-Robayo for helpful comments and suggestions, and A. Townsend Peterson for improving the manuscript and writing.

Funding

PAPIIT-UNAM (Project number IN212217), Idea Wild, and the Latin American Student Field Grant of the American Society of Mammalogists (to ZGS) provided financial support for the study. ZGS (No. 333,463/230,736) and AGB (No. 176,133/176,133) received Ph.D. scholarships from the Mexican Council of Science and Technology (CONACyT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed with the idea of the analysis. ZYGS and AGB carried out the spatial and statistical analyses under the supervision of EMM. All authors contributed equally with ideas and discussion. ZYGS lead the writing and EMM the editing.

Corresponding author

Correspondence to Enrique Martínez-Meyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Saucedo, Z.Y., González-Bernal, A. & Martínez-Meyer, E. Identifying priority areas for landscape connectivity for three large carnivores in northwestern Mexico and southwestern United States. Landscape Ecol 36, 877–896 (2021). https://doi.org/10.1007/s10980-020-01185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01185-4

Keywords

Navigation