Skip to main content

Advertisement

Log in

Human appropriated net primary productivity as a metric for land use planning: a case study in the US Great Lakes region

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Human appropriation of net primary productivity (HANPP) is employed as a measure of human pressures on biodiversity, though largely at global and national scales rather than landscape to regional scales where many conservation decisions take place. Though gaining in familiarity, HANPP is not widely utilized by conservation professionals.

Objectives

This study, encompassing the US side of the Great Lakes basin, examines how regional distributions of HANPP relate to landscape-based biodiversity proxy metrics used by conservation professionals. Our objectives were (1) to quantify the HANPP of managed lands at the county scale; and (2) to assess spatial patterns of HANPP in comparison to landscape diversity and local habitat connectedness to determine if the metric can provide useful information to conservation professionals.

Methods

We aggregated forest and cropland NPP data between 2005 and 2015 and coupled it with previously published potential vegetation maps to quantify the HANPP of each county in the study region. We mapped the outputs at 500 m resolution to analyze spatial relationships between HANPP and landscape metrics of biodiversity potential.

Results

Area-weighted HANPP across our study region averaged 45% of NPP, down to 4.9% in forest-dominated counties. Greater HANPP correlated with reduced landscape diversity (p < 0.001, r2 = 0.28) and reduced local habitat connectedness (p < 0.001, r2 = 0.36).

Conclusion

HANPP could be used as an additional tool for conservation professionals during regional-scale land use planning or conservation decision-making, particularly in mixed-use landscapes that both support important biodiversity and have high levels of primary production harvest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams MD (1992) Fire and development of oak forests. Bioscience 42(5):346–353

    Article  Google Scholar 

  • An L, Brown DG, Nassauer JI, Low B (2011) Variations in development of exurban residential landscapes: timing, location, and driving forces. J Land Use Sci 6:13–32

    Article  Google Scholar 

  • Andersen CB, Donovan RK, Quinn JE (2015) Human appropriation of net primary production (HANPP) in an agriculturally-dominated watershed, southeastern USA. Land 4:513–540

    Article  Google Scholar 

  • Anderson MG, Barnett A, Clark M, Sheldon AO, Prince J, Vickery B (2016) Resilient and connected landscapes for terrestrial conservation. The Nature Conservancy, Eastern Conservation Science, Eastern Regional Office, Boston, p 161

  • Anderson MG, Clark MM, Cornett MW, Hall KR, Olivero Sheldon A, Prince J (2018) Resilient sites for terrestrial conservation in the Great Lakes and Tallgrass Prairie. The Nature Conservancy, Eastern Conservation Science and North America Region, Boston, MA. Retrieved from https://easterndivision.s3.amazonaws.com/Terrestrial/Great_Lakes_Resilience/Great_Lakes_and_Tallgrass_Prairie_Resilience_05_11_18.pdf

  • Anderson MG, Comer PJ, Beier P, Lawler JJ, Schloss CA, Buttrick S, Albano CM, Faith DP (2015) Case studies of conservation plans that incorporate geodiversity. Conserv Biol. https://doi.org/10.1111/cobi.12503

    Article  PubMed  Google Scholar 

  • Anderson MG, Ferree CE (2010) Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE 5:e11554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ArcGIS ArcMap (2017) Version 10.5.1. Esri

  • Asbjornsen H, Hernandez-Santana V, Liebman M, Bayala J, Chen J, Helmers M, Ong CK, Schulte LA (2014) Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew Agric Food Syst Camb 29:101–125

    Article  Google Scholar 

  • Bailey R (1994) Bailey’s ecoregions of the conterminous United States. Vector Digital Data. US Forest Service, United States. Retrieved from https://www.sciencebase.gov/catalog/item/54244abde4b037b608f9e23d

  • Bogue MB (2000) Fishing the Great Lakes: an environmental history, 1783–1933. The University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Breffle WS, Muralidharan D, Donovan RP, Liu F, Mukherjee A, Jin Y (2013) Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: a Lake Michigan case study. Resour Policy 38:152–161

    Article  Google Scholar 

  • Brown DG (2003) Land use and forest cover on private parcels in the Upper Midwest USA, 1970 to 1990. Landsc Ecol 18:777–790

    Article  Google Scholar 

  • Brown DG, Robinson DT, An L, Nassauer JI, Zellner M, Rand W, Riolo R, Page SE, Low B, Wang Z (2008) Exurbia from the bottom-up: confronting empirical challenges to characterizing a complex system. Geoforum 39:805–818

    Article  Google Scholar 

  • Burrill EA (2018) The Forest Inventory and Analysis Database: database description and user guide for phase 2 (version 7.0.1), 942

  • CropScape—NASS CDL Program (n.d.) https://nassgeodata.gmu.edu/CropScape/. Accessed 13 May 2018

  • Currie WS (2012) Energy flow. In: Gibson D (ed) Oxford bibliographies online: ecology. Oxford University Press, New York. http://oxfordbibliographiesonline.com

    Google Scholar 

  • Currie WS, Kiger S, Nassauer JI, Hutchins M, Marshall LL, Brown DG, Riolo RL, Robinson DT, Hart SK (2016) Multi-scale heterogeneity in vegetation and soil carbon in exurban residential land of southeastern Michigan, USA. Ecol Appl 26:1421–1436

    Article  PubMed  Google Scholar 

  • DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2:249–257

    Article  Google Scholar 

  • Ensign SH, Mallin MA (2001) Stream water quality changes following timber harvest in a coastal plain swamp forest. Water Res 35:3381–3390

    Article  CAS  PubMed  Google Scholar 

  • Fan S (2018a) Indiana county boundaries. Polygon, Great Lakes Commission des Grands Lacs. https://www.glc.org/greatlakesgis/maplayers

  • Fan S (2018b) Michigan county boundaries. Polygon, Great Lakes Commission des Grands Lacs. https://www.glc.org/greatlakesgis/maplayers

  • Fan S (2018c) Ohio county boundaries. Polygon, Great Lakes Commission des Grands Lacs. https://www.glc.org/greatlakesgis/maplayers

  • Fan S (2018d) Wisconsin county boundaries. Polygon, Great Lakes Commission des Grands. https://www.glc.org/greatlakesgis/maplayers

  • Gerber LR (2016) Conservation triage or injurious neglect in endangered species recovery. Proc Natl Acad Sci USA 113:3563–3566

    Article  CAS  PubMed  Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    Article  CAS  Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S, Hsieh H-Y, Iverson AL, Batary P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B Biol Sci 281:20141358–20141358

    Article  Google Scholar 

  • Graham JB, Nassauer JI, Currie WS, Ssegane H, Negri MC (2017) Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area. Landsc Ecol 32:1023–1037

    Article  Google Scholar 

  • Gustafson EJ, Loehle C (2008) How will the changing industrial forest landscape affect forest sustainability? J For 106:380–387

    Google Scholar 

  • Haberl H (1997) Human appropriation of net primary production as an environmental indicator: implications for sustainable development. Ambio 26:143–146

    Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Loibl W, Schulz N, Weisz H (2001) Changes in ecosystem processes induced by land use: human appropriation of aboveground NPP and its influence on standing crop in Austria. Glob Biogeochem Cycles 15:929–942

    Article  CAS  Google Scholar 

  • Haberl H, Schulz NB, Plutzar C, Erb KH, Krausmann F, Loibl W, Moser D, Sauberer N, Weisz H, Zechmeister HG, Zulka P (2004) Human appropriation of net primary production and species diversity in agricultural landscapes. Agric Ecosyst Environ 102:213–218

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947

    Article  CAS  PubMed  Google Scholar 

  • Haberl H, Gaube V, Díaz-Delgado R, Krauze K, Neuner A, Peterseil J, Plutzar C, Singh SJ, Vadineanu A (2009) Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecol Econ 68:1797–1812

    Article  Google Scholar 

  • Haberl H, Erb K-H, Plutzar C, Fischer-Kowalski M, Krausmann F (2012) Human appropriation of net primary productivity (HANPP) as an indicator for pressures on biodiversity. In: Scientific Committee on Problems of the Environment (SCOPE) Series: Sustainability indicators: a scientific assessment. Island Press, Washington, pp 271–283. https://site.ebrary.com/lib/alltitles/docDetail.action?docID=10222014

  • Haberl H, Erb K-H, Krausmann F (2014) Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–391

    Article  Google Scholar 

  • Han W, Yang Z, Di L, Mueller R (2012) CropScape: a Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agric 84:111–123

    Article  Google Scholar 

  • Handler S, Duveneck MJ, Iverson L, Peters E, Scheller RM, Wythers KR, Brandt L, Butler P, Janowiak M, Swanston C, Barrett K, Kolka R, McQuinston C, Palik B, Reich PB, Turner C, White MA, Adams C, D’Amato AW, Hagell S, Johnson R, Larson P, Larson M, Matthews S, Montgomery R, Olson S, Peters M, Prasad A, Rajala J, Shannon PD, Daley J, Davenport M, Emery MR, Fehringer D, Hoving CL, Johnson G, Johnson LB, Neitzel D, Rissman A, Rittenhouse C, Ziel R (2014) Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project. http://www.treesearch.fs.fed.us.ezproxy1.lib.asu.edu/pubs/45688

  • Hawkins BA, Porter EE, Diniz-Filho JAF (2003) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608–1623

    Article  Google Scholar 

  • Hicke JA, Lobell DB, Asner GP (2004) Cropland area and net primary production computed from 30 years of USDA Agricultural Harvest Data. Earth Interact 8:1–20

    Article  Google Scholar 

  • Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogram Eng Remote Sens 81:345–354

    Google Scholar 

  • Host GE, Pregitzer KS, Ramm CW, Hart JB, Cleland DT (1987) Landform-mediated differences in successional pathways among upland forest ecosystems in northwestern lower Michigan. For Sci 33:445–457

    Google Scholar 

  • Janowiak MK, Iverson LR, Mladenoff DJ, Peters E, Wythers KR, Xi W, Brandt LA, Butler PR, Handler SD, Shannon PD, Swanston C, Parker LR, Amman AJ, Bogaczyk B, Handler C, Lesch E, Reich PB, Matthews S, Peters M, Prasad A, Khanal S, Liu F, Bal T, Bronson D, Burton A, Ferris J, Fosgitt J, Hagan S, Johnston E, Kane E, Matula C, O'Connor R, Higgins D, St Pierre M, Daley J, Davenport M, Emery MR, Fehringer D, Hoving CL, Johnson G, Neitzel D, Notaro M, Rissman A, Rittenhouse C, Ziel R (2014) Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project. http://www.nrs.fs.fed.us/pubs/46393

  • Johnson LB, Kovalenko KE, Host GE, Brady VJ, Bracey AM, Brown TN, Ciborowski JJH, Danz NP, Howe RW, Reavie ED, Niemi GJ (2015) Great Lakes Environmental Indicators Testing and Refinement: Final Report (U.S. EPA GLNPO Project Identifier: EPAGLNPO-2010-NS-5-1071-795. Natural Resources Research Institute Technical Report No. NRRI/TR-2015/56)

  • Jones A, Schindel M, Scott S (2015) Mapping habitat connectivity for the Great Sage-Grouse in Oregon’s Sage-Grouse Conservation Partnership (SageCon) Assessment Area. The Nature Conservancy (Portland, OR) in partial fulfillment of the BLM Cooperative Agreement L12AC2061. https://www.researchgate.net/profile/Aaron_Jones17/publication/301341799_Mapping_Habitat_Connectivity_for_Greater_Sage-Grouse_in_Oregon%27s_Sage-Grouse_Conservation_Partnership_SageCon_Assessment_Area/links/57132fc108ae39beb87a54ae.pdf?origin=publication_detail

  • Kells BJ, Swinton SM (2014) Profitability of cellulosic biomass production in the Northern Great Lakes Region. Agron J 106:397–406

    Article  Google Scholar 

  • Krausmann F, Erb K-H, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger TD (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci USA 110:10324–10329

    Article  CAS  PubMed  Google Scholar 

  • Kremen C (2015) Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann N Y Acad Sci 1355:52–76

    Article  PubMed  Google Scholar 

  • Lapin M, Barnes B (1995) Using the landscape ecosystem approach to assess species and ecosystem diversity. Conserv Biol 9(5):1148–1158

    Article  Google Scholar 

  • Lawler JJ, Ackerly DD, Albano CM, Anderson MG, Dobrowski SZ, Gill JL, Heller NE, Pressey RL, Sanderson EW, Weiss SB (2015) The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv Biol 29:618–629

    Article  PubMed  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington

    Google Scholar 

  • Lobell DB, Hicke JA, Asner GP, Field CB, Tucker CJ, Los SO (2002) Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98. Glob Change Biol 8:722–735

    Article  Google Scholar 

  • Marull J, Font C, Tello E, Fullana N, Domene E, Pons M, Galán E (2016) Towards an energy–landscape integrated analysis? Exploring the links between socio-metabolic disturbance and landscape ecology performance (Mallorca, Spain, 1956–2011). Landsc Ecol 31:317–336

    Article  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396

    Article  Google Scholar 

  • MOD17A3H.006: Terra Net Primary Production Yearly Global 500m. (2015). USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls. NASA EOSDIS Land Processes DAAC, South Dakota

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycles 22:GB1022

    Article  CAS  Google Scholar 

  • MYD17A3H.006: Aqua Net Primary Production Yearly Global 500m. (2015). USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls. South Dakota: NASA EOSDIS Land Processes DAAC, South Dakota

  • O’Neill DW, Tyedmers PH, Beazley KF (2007) Human appropriation of net primary production (HANPP) in Nova Scotia, Canada. Reg Environ Change 7(1):1–14. https://doi.org/10.1007/s10113-006-0021-1

    Article  Google Scholar 

  • Persha L, Agrawal A, Chhatre A (2011) Social and ecological synergy: local rulemaking, forest livelihoods, and biodiversity conservation. Science 331:1606–1608

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Plutzar C, Kroisleitner C, Haberl H, Fetzel T, Bulgheroni C, Beringer T, Hostert P, Kastner T, Kuemmerle T, Lauk C, Levers C, Lindner M, Moser D, Müller D, Niedertscheider M, Paracchini M, Schaphoff S, Verburg P, Verkerk PJ, Erb K-H (2016) Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Reg Environ Change 16:1225–1238

    Article  Google Scholar 

  • Prince SD, Haskett J, Steininger M, Strand H, Wright R (2001) Net primary production of U.S. Midwest Croplands from agricultural harvest yield data. Ecol Appl 11:1194–1205

    Article  Google Scholar 

  • Robinson DT (2012) Land-cover fragmentation and configuration of ownership parcels in an exurban landscape. Urban Ecosyst 15:53–69

    Article  Google Scholar 

  • Running S, Mu Q, Zhao M (2015) MYD17A3H MODIS/Aqua and Terra Net Primary Production Yearly L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD17A3H.006

  • Shivan GC, Potter-Witter K (2011) An examination of Michigan’s logging sector in the emerging bioenergy market. For Prod J 61(6):459–465

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Slater S, Keegstra K, Donohue TJ (2010) The US Department of Energy Great Lakes Bioenergy Research Center: Midwestern biomass as a resource for renewable fuels. BioEnergy Research 3:3–5

    Article  Google Scholar 

  • Sousounis PJ, Bisanz JM (eds) (2000) Preparing for a changing climate: the potential consequences of climate variability and change: Great Lakes. Great Lakes Regional Assessment, University of Michigan, Atmospheric, Oceanic and Space Sciences Department, Ann Arbor, MI

  • Steen-Adams MM, Langston N, Adams MDO, Mladenoff DJ (2015) Historical framework to explain long-term coupled human and natural system feedbacks: application to a multiple-ownership forest landscape in the northern Great Lakes region, USA. Ecol Soc 20:140–160

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  • The Michigan Department of Natural Resources (2018) Commercial Timber Sales. https://www.michigan.gov/dnr/0,4570,7-350-79136_79237_80912---,00.html. Accessed 27 July 2018

  • Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol Soc 10:32

    Article  Google Scholar 

  • USDA/NASS QuickStats Ad-hoc Query Tool (2007, 2012) https://quickstats.nass.usda.gov/. Accessed 20 Mar 2018

  • Vačkář D, Harmáčková ZV, Kaňková H, Stupková K (2016) Human transformation of ecosystems: comparing protected and unprotected areas with natural baselines. Ecol Ind 66:321–328

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wang X, Burns DA, Yanai RD, Briggs RD, Germain RH (2006) Changes in stream chemistry and nutrient export following a partial harvest in the Catskill Mountains, New York, USA. For Ecol Manage 223:103–112

    Article  Google Scholar 

  • Whitney GG (1987) An ecological history of the great lakes forest of Michigan. J Ecol 75:667–684

    Article  Google Scholar 

  • Wrbka T, Erb K-H, Schulz NB, Peterseil J, Hahn C, Haberl H (2004) Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21:289–306

    Article  Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Preeti Rao assisted with the collection and interpretation of forest harvest datasets. Shannon Brines assisted with GIS analysis. The School for Environment and Sustainability, University of Michigan and The Nature Conservancy of Michigan provided partial support for this research. We gratefully acknowledge fellowship support provided to Erin Barton by the School for Environment and Sustainability at the University of Michigan and the Wyss Foundation’s Wyss Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin M. Barton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 kb)

Supplementary file2 (XLSX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, E.M., Pearsall, D.R. & Currie, W.S. Human appropriated net primary productivity as a metric for land use planning: a case study in the US Great Lakes region. Landscape Ecol 35, 1323–1339 (2020). https://doi.org/10.1007/s10980-020-01017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01017-5

Keywords

Navigation