Skip to main content

Advertisement

Log in

Applying the patch-matrix model to lakes: a connectivity-based conservation framework

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Biodiversity conservation for terrestrial species often emphasizes land protection to help maintain connectivity among habitat patches. However, conservation of aquatic and semi-aquatic species is challenging because aquatic species (e.g., fish) move among lakes using aquatic connections (e.g., streams, wetlands), whereas semi-aquatic species (e.g., amphibians) use both aquatic connections and upland habitats.

Objectives

We applied the patch-matrix model to create an aquatic and semi-aquatic connectivity framework for lakes. We applied our framework using lakes in Michigan, USA to examine (1) the relationship between aquatic and semi-aquatic connectivity for lakes and (2) the extent to which protected areas encompass aquatic and semi-aquatic connectivity among lakes.

Methods

We used principal component analysis to calculate aquatic and semi-aquatic connectivity scores for lakes. We then examined relationships among aquatic and semi-aquatic connectivity scores and existing protected areas (strict and multi-use).

Results

Fewer than 3% of lakes had high scores for either aquatic or semi-aquatic connectivity. Connectivity scores were generally higher in Michigan’s Upper Peninsula, which is heavily forested with greater land protection. Although lake protection was overall low (16 and 32% of lake watersheds in Michigan were ≥ 10% protected under strict and multi-use protection, respectively), highly connected lakes were generally more protected than less connected lakes.

Conclusions

We propose using our aquatic and semi-aquatic connectivity framework to (1) identify and prioritize lakes for conservation that are likely to have high biodiversity and conservation value and (2) generate testable hypotheses for studying the integrated terrestrial-aquatic landscape under global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abell R, Allan JD, Lehner B (2007) Unlocking the potential of protected areas for freshwaters. Biol Cons 134:48–63

    Article  Google Scholar 

  • Adams VM, Álvarez-Romero JG, Carwardine J, Cattarino L, Hermoso V, Kennard MJ, Linke S, Pressey RL, Stoeckl N (2014) Planning across freshwater and terrestrial realms: cobenefits and tradeoffs between conservation actions. Conserv Lett 7:425–440

    Article  Google Scholar 

  • Andresen JA (2017) Historical climate trends in Michigan and the Great Lakes region. http://www.espp.msu.edu/climatechange/presentations/CCGL.Andresen.pdf

  • Bastin L, Gorelick N, Saura S, Bertzky B, Dubois G, Fortin MJ, Pekel JF (2019) Inland surface waters in protected areas globally: current coverage and 30-year trends. PLoS ONE 14:e0210496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991

    Article  PubMed  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2017) Surface-water dynamics and land use influence landscape connectivity across a major dryland region. Ecol Appl 27:1124–1137

    Article  PubMed  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2018) Evaluating static and dynamic landscape connectivity modelling using a 25-year remote sensing time series. Landscape Ecol 33:625–640

    Article  Google Scholar 

  • Bivand R, Rundel C (2018) rgeos: interface to Geometry Engine -Open Source (‘GEOS’). R package version 0.4-2. https://CRAN.R-project.org/package=rgeos

  • Bowne DR, Bowers MA, Hines JE (2006) Connectivity in an agricultural landscape as reflected by interpond movements of a freshwater turtle. Conserv Biol 20:780–791

    Article  PubMed  Google Scholar 

  • Brewitt KS, Danner EM (2014) Spatio-temporal temperature variation influences juvenile steelhead (Oncorhynchus mykiss) use of thermal refuges. Ecosphere 5:art92

    Article  Google Scholar 

  • Browne RA (1981) Lakes as islands: biogeographic dbistribution, turnover rates, and species composition in the lakes of central New York. J Biogeogr 8:75–83

    Article  Google Scholar 

  • Burkhead NM (2012) Extinction rates in North American freshwater fishes, 1900–2010. Bioscience 62:798–808

    Article  Google Scholar 

  • Campbell Grant EH, Nichols JD, Lowe WH, Fagan WF (2010) Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc Natl Acad Sci 107:6936–6940

    Article  PubMed  PubMed Central  Google Scholar 

  • Collinge SK, Forman RT (1998) A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grassland insects. Oikos 82:66–84

    Article  Google Scholar 

  • Cottenie K, De Meester L (2003) Connectivity and cladoceran species richness in a metacommunity of shallow lakes. Freshw Biol 48:823–832

    Article  Google Scholar 

  • Cottenie K, Michels E, Nuytten N, De Meester L (2003) Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84:991–1000

    Article  Google Scholar 

  • Coulter AA, Brey MK, Lubejko M, Kallis JL, Coulter DP, Glover DC, Whitledge GW, Garvey JE (2018) Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species. Biol Invasions 20:3255–3270

    Article  Google Scholar 

  • Davies BR, Biggs J, Williams PJ, Lee JT, Thompson S (2010) A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. In: Oertli B, Céréghino R, Biggs J, Declerck S, Hull A, Miracle MR (eds) Pond conservation in Europe. Springer, Dordrecht, pp 7–17

    Google Scholar 

  • De Meester L, Declerck S, Stoks R, Louette G, Van De Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv: Mar Freshw Ecosyst 15:715–725

    Article  Google Scholar 

  • Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landscape Ecol 27:267–279

    Article  Google Scholar 

  • Ding C, Jiang X, Xie Z, Brosse S (2017) Seventy-five years of biodiversity decline of fish assemblages in Chinese isolated plateau lakes: widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity. Divers Distrib 23:171–184

    Article  Google Scholar 

  • Donald DB, Vinebrooke RD, Anderson RS, Syrgiannis J, Graham MD (2011) Recovery of zooplankton assemblages in mountain lakes from the effects of introduced sport fish. Can J Fish Aquat Sci 58:1822–1830

    Article  Google Scholar 

  • Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41:1109–1115

    Article  Google Scholar 

  • Eriksson O, Fröborg H (1996) “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can J Bot 74:1369–1374

    Article  Google Scholar 

  • Erős T, Campbell Grant EH (2015) Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes. Freshw Biol 60:1487–1501

    Article  Google Scholar 

  • Erős T, O’Hanley JR, Czeglédi I (2018) A unified model for optimizing riverscape conservation. J Appl Ecol 55:1871–1883

    Article  Google Scholar 

  • Erős T, Olden JD, Schick RS, Schmera D, Fortin MJ (2012) Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecol 27:303–317

    Article  Google Scholar 

  • Evans JS (2018) spatialEco. R package version 0.1.1-1. https://CRAN.R-project.org/package=spatialEco

  • Fergus CE, Lapierre J, Oliver SK, Skaff NK, Cheruvelil KS, Webster K, Scott C, Soranno P (2017) The freshwater landscape: lake, wetland, and stream abundance and connectivity at macroscales. Ecosphere 8:e01911

    Article  Google Scholar 

  • Fortuna MA, Gómez-Rodríguez C, Bascompte J (2006) Spatial network structure and amphibian persistence in stochastic environments. Proc R Soc B 273(1592):1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

  • Fullerton AH, Burnett KM, Steel EA, Flitcroft RL, Pess GR, Feist BE, Torgersen CE, Miller DJ, Sanderson BL (2010) Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshw Biol 55:2215–2237

    Article  Google Scholar 

  • Griffiths D (2015) Connectivity and vagility determine spatial richness gradients and diversification of freshwater fish in North America and Europe. Biol J Lin Soc 116:773–786

    Article  Google Scholar 

  • Haas K, Köhler U, Diehl S, Köhler P, Dietrich S, Holler S, Jaensch A, Niedermaier M, Vilsmeier J (2007) Influence of fish on habitat choice of water birds: a whole system experiment. Ecology 88:2915–2925

    Article  PubMed  Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138

    Article  Google Scholar 

  • Hansen GJA, Read JS, Hansen JF, Winslow LA (2017) Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob Change Biol 23:1463–1476

    Article  Google Scholar 

  • Hayes D, Baker E, Bednarz R, Borgeson D Jr, Braunscheidel J, Harrington A, Hay R, Waybrant J, Breck J, Nuhfer A, Bremigan M, Lockwood R, Schneider J, Seelbach P, Zorn T (2003) Developing a standardized sampling program: the Michigan experience. Fisheries 28:18–25

    Article  Google Scholar 

  • Hecnar SJ, M’Closkey RT (1997) The effects of predatory fish on amphibian species richness and distribution. Biol Conserv 79:123–131

    Article  Google Scholar 

  • Herbert ME, Mcintyre PB, Doran PJ, Allan JD, Abell R (2010) Terrestrial reserve networks do not adequately represent aquatic ecosystems. Conserv Biol 24:1002–1011

    Article  PubMed  Google Scholar 

  • Hermoso V, Kennard MJ, Linke S (2012) Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Divers Distrib 18:448–458

    Article  Google Scholar 

  • Hijmans R (2017) raster: geographic data analysis and modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster

  • Hortal J, Nabout JC, Calatayud J, Carneiro FM, Padial A, Santos A, Siqueira T, Bokma F, Bini LM, Ventura M (2014) Perspectives on the use of lakes and ponds as model systems for macroecological research. J Limnol 73:46–60

    Article  Google Scholar 

  • Hunter ML Jr, Jacobson GL Jr, Webb T III (1988) Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv Biol 2:375–385

    Article  Google Scholar 

  • Isaak DJ, Young MK, Nagel DE, Horan DL, Groce MC (2015) The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob Change Biol 21:2540–2553

    Article  Google Scholar 

  • Jeliazkov A, Lorrillière R, Besnard A, Garnier J, Silvestre M, Chiron F (2019) Cross-scale effects of structural and functional connectivity in pond networks on amphibian distribution in agricultural landscapes. Freshw Biol 64:997–1014

    Article  Google Scholar 

  • Jenkins CN, Van Houtan KS, Pimm SL, Sexton JO (2015) US protected lands mismatch biodiversity priorities. Proc Natl Acad Sci 112:5081–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juffe-Bignoli D, Burgess ND, Bingham H, Belle EMS, de Lima MG, Deguignet M, Bertzky B, Milam AN, Martinez-Lopez J, Lewis E, Eassom A, Wicander S, Geldmann J, van Soesbergen A, Arnell AP, O’Connor B, Park S, Shi YN, Danks FS, MacSharry B, Kingston N. Protected Planet Report 2014. UNEP-WCMC, Cambridge, UK

  • Krosby M, Theobald DM, Norheim R, McRae BH (2018) Identifying riparian climate corridors to inform climate adaptation planning. PLoS ONE 13:e0205156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson LL, Larson SL (1996) Riparian shade and stream temperature: a perspective. Rangelands 18:149–152

    Google Scholar 

  • Lassen HH (1975) The diversity of freshwater snails in view of the equilibrium theory of island biogeography. Oecologia 19:1–8

    Article  PubMed  Google Scholar 

  • Lawler JJ, Shafer SL, Bancroft BA, Blaustein AR (2010) Projected climate impacts for the amphibians of the Western Hemisphere. Conserv Biol 24:38–50

    Article  PubMed  Google Scholar 

  • Magnuson JJ, Tonn WM, Banerjee A, Toivonen J, Sanchez O, Rask M (1998) Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology 79:2941–2956

    Article  Google Scholar 

  • Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Article  Google Scholar 

  • McCullough IM (2019) cont-limno/LivinOnTheEdge: Aquatic and semi-aquatic connectivity among lakes in relation to protected areas (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.3463394

  • McMenamin SK, Hadly EA, Wright CK (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc Natl Acad Sci 105:16988–16993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Mushet DM, Alexander LC, Bennett M, Schofield K, Christensen JR, Ali G, Pollard A, Fritz K, Lang MW (2019) Differing modes of biotic connectivity within freshwater ecosystem mosaics. JAWRA J Am Water Resour Assoc 55:307–317

    Article  PubMed  Google Scholar 

  • Nel JL, Roux DJ, Abell R, Ashton PJ, Cowling RM, Higgins JV, Thieme M, Viers JH (2009) Progress and challenges in freshwater conservation planning. Aquat Conserv: Mar Freshw Ecosyst 19:474–485

    Article  Google Scholar 

  • Noss RF, Harris LD (1986) Nodes, networks, and MUMs: preserving diversity at all scales. Environ Manag 10:299–309

    Article  Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  • Olden JD, Jackson DA, Peres-Neto PR (2001) Spatial isolation and fish communities in drainage lakes. Oecologia 127:572–585

    Article  PubMed  Google Scholar 

  • Panlasigui S, Davis AJS, Mangiante MJ, Darling JA (2018) Assessing threats of non-native species to native freshwater biodiversity: conservation priorities for the United States. Biol Conserv 224:199–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick DA, Gibbs JP, Popescu VD, Nelson DA (2012) Multi-scale habitat-resistance models for predicting road mortality “hotspots” for turtles and amphibians. Herpetol Conserv Biol 7:407–426

    Google Scholar 

  • Pereira M, Segurado P, Neves N (2011) Using spatial network structure in landscape management and planning: a case study with pond turtles. Landsc Urban Plann 100:67–76

    Article  Google Scholar 

  • Peterman WE, Rittenhouse TAG, Earl JE, Semlitsch RD (2013) Demographic network and multi-season occupancy modeling of Rana sylvatica reveal spatial and temporal patterns of population connectivity and persistence. Landscape Ecol 28:1601–1613

    Article  Google Scholar 

  • Pool TK, Grenouillet G, Villéger S (2014) Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers Distrib 20:1235–1244

    Article  Google Scholar 

  • PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu. Created 4 Feb 2004

  • Pugh SA (2018) Forests of Michigan, 2017. Resource Update FS-153. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square. https://doi.org/10.2737/FS-RU-153

    Book  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ribeiro R, Carretero MA, Sillero N, Alarcos G, Ortiz-Santaliestra M, Lizana M, Llorente GA (2011) The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns? Landscape Ecol 26:673–682

    Article  Google Scholar 

  • Ricciardi A, Neves RJ, Rasmussen JB (2002) Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. J Anim Ecol 67:613–619

    Article  Google Scholar 

  • Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–1222

    Article  Google Scholar 

  • Robillard CM, Coristine LE, Soares RN, Kerr JT (2015) Facilitating climate-change-induced range shifts across continental land-use barriers. Conserv Biol 29:1586–1595

    Article  PubMed  Google Scholar 

  • Roe JH, Georges A (2007) Heterogeneous wetland complexes, buffer zones, and travel corridors: landscape management for freshwater reptiles. Biol Conserv 135:67–76. https://doi.org/10.1016/j.biocon.2006.09.019

    Article  Google Scholar 

  • Saunders DL, Meeuwig JJ, Vincent ACJ (2002) Freshwater protected areas: strategies for conservation. Conserv Biol 16:30–41

    Article  Google Scholar 

  • Saunders MI, Brown CJ, Foley MM, Febria CM, Albright R, Mehling MG, Kavanaugh MT, Burfeind DD (2016) Human impacts on connectivity in marine and freshwater ecosystems assessed using graph theory: a review. Mar Freshw Res 67:277–290. https://doi.org/10.1071/MF14358

    Article  Google Scholar 

  • Scheffer M, Van Geest GJ, Zimmer K, Jeppesen E, Søndergaard M, Butler MG, Hanson MA, Declerck S, De Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231

    Article  Google Scholar 

  • Schilling EG, Loftin CS, Huryn AD (2009) Macroinvertebrates as indicators of fish absence in naturally fishless lakes. Freshw Biol 54:181–202

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations?. Ecography 28:110–128. https://doi.org/10.1111/j.0906-7590.2005.04042.x

    Article  Google Scholar 

  • Soranno P, Cheruvelil KS (2017a) LAGOS-NE-GEO v1.05: a module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 1925–2013. Environ Data Initiat. https://doi.org/10.6073/pasta/b88943d10c6c5c480d5230c8890b74a8

    Article  Google Scholar 

  • Soranno P, Cheruvelil KS (2017b) LAGOS-NE-GIS v1.0: a module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 2013–1925. Environ Data Initiat. https://doi.org/10.6073/pasta/fb4f5687339bec467ce0ed1ea0b5f0ca

    Article  Google Scholar 

  • Soranno PA et al (2017) LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. GigaScience. https://doi.org/10.1093/gigascience/gix101

    Article  PubMed  PubMed Central  Google Scholar 

  • Stachelek J, Oliver S (2017) LAGOSNE: interface to the lake multi-scaled geospatial and temporal database. R package version 1.1.0. https://cran.r-project.org/package=LAGOSNE

  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    Article  CAS  PubMed  Google Scholar 

  • USFWS (2018) National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. http://www.fws.gov/wetlands/

  • USGS (2011) NLCD 2011 land cover (2011 edition, amended 2014)—National Geospatial Data Asset (NGDA) Land Use Land Cover

  • USGS (2016) U.S. Geological Survey, Gap Analysis Program (GAP). Protected Areas Database of the United States (PAD-US), version 1.4 Combined Feature Class

  • USGS (2018) National Hydrography Dataset Plus medium resolution version 2. https://www.epa.gov/waterdata/get-data

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402

    Article  Google Scholar 

  • Yeng S, Lin T, Lin YF (1990) The n-dimensional pythagorean theorem. Linear Multilinear Algebra 26:9–13

    Article  Google Scholar 

  • Zylstra ER, Swann DE, Hossack BR, Muths E, Steidl RJ (2019) Drought-mediated extinction of an arid-land amphibian: insights from a spatially explicit dynamic occupancy model. Ecol Appl. https://doi.org/10.1002/eap.1859

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation Macrosystems Biology program (EF #1638679 and #1638554). PAS was supported by was supported by the USDA National Institute of Food and Agriculture, Hatch Project 101354. IMM conceived of research questions, performed data analyses and contributed to literature review. KBSK and JS contributed to development of aquatic connectivity variables. JD performed literature review, exploratory data analysis of connectivity variables, and produced some of the figures. KSC identified and reviewed many of the references cited in the paper. All authors contributed to development of the conceptual framework and manuscript writing. We thank A. Adams for consultation on amphibian movement ecology and N. Smith and L. Rodriguez for reviewing an early draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. McCullough.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCullough, I.M., King, K.B.S., Stachelek, J. et al. Applying the patch-matrix model to lakes: a connectivity-based conservation framework. Landscape Ecol 34, 2703–2718 (2019). https://doi.org/10.1007/s10980-019-00915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00915-7

Keywords

Navigation