Skip to main content

Advertisement

Log in

Future forest dynamics under climate change, land use change, and harvest in subtropical forests in Southern China

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Subtropical forests have and will continue to face tremendous pressure from various disturbances, which have the potential to alter forest composition, structure, and function. Forest dynamics relate to spatial patterns, ecological processes, and their interactions. However, integrating forest ecosystems and land systems has seldom been attempted in southern China.

Objectives

We explore the spatiotemporal response and trajectories of forest dynamics at different scales under climate change, harvesting, and land-use disturbances in the near future.

Methods

We simulated forest landscape dynamics by integrating a forest landscape model (LANDIS-II), an ecosystem model (PnET-II), and a land change model (CA-Markov) for 2010 to 2050. We identified changes in forest composition, aboveground biomass, and landscape patterns under individual and integrated scenarios, including a control scenario, climate change, harvesting, and land-use change for tree species, ecoregions, and forest types.

Results

For forest composition, the forest area continued to increase, and coniferous forests increased approximately 3.7 times that of broad-leaved forests. Harvesting reduced aboveground biomass, with a reduction of 30.3% in comparison to the control scenario. The integrated disturbances showed a greater impact on the forest landscape. Landscape fragmentation increased, showing that the patch density increased by 52.3% (control scenario), 46.2% (climate change), 118.4% (harvest), 55.0% (land use change) and 139.5% (integrated scenarios), respectively.

Conclusions

Our results suggest that climate change will contribute to forest growth, especially for coniferous forests. Harvesting will reduce forest area and aboveground biomass. The interaction between human activities and climate change contributes to diminished forest expansion and increased landscape fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aber JD, Driscoll CT (1997) Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochem Cycles 11(4):639–648

    Article  CAS  Google Scholar 

  • Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474

    Article  PubMed  Google Scholar 

  • Acker SA, Halpern CB, Harmon ME, Dyrness CT (2002) Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting age. Tree Physiol 22:213–217

    Article  CAS  PubMed  Google Scholar 

  • Azevedo JC, Perera AH, Pinto MA (2014) Forest landscapes and global changes: challenges for research and management. Springer, New York

    Book  Google Scholar 

  • Azizi A, Malakmohamadi B, Jafari HR (2016) Land use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model. Global J Environ Sci Manag 2(3):223–234

    Google Scholar 

  • Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Mac-Nally R, Thomson JR, Ferraz SFDB, Louzada J, Oliveira VHF, Parry L, Solar RRDC, Vieira ICG, Aragão LEOC, Begotti RA, Braga RF, Cardoso TM, de Oliveira RC, Souza CM, Moura NG, Nunes SS, Siqueira JV, Pardini R, Silveira JM, Vaz-de-Mello FZ, Veiga RCS, Venturieri A, Gardner TA (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535(7610):144–147

    Article  CAS  PubMed  Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479(7374):517–520

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Wang KB, Lin YS, Shi WY, Song Y, He XH (2015) Balancing green and grain trade. Nat Geosci 8(10):739–741

    Article  CAS  Google Scholar 

  • Chmura DJ, Modrzyński J, Chmielarz P, Tjoelker MG (2017) Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit. Plant Biol 19(2):172–182

    Article  CAS  PubMed  Google Scholar 

  • Corlett RT (2009) Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41(5):592–598

    Article  Google Scholar 

  • Creutzburg MK, Scheller RM, Lucash MS, LeDuc SD, Johnson MG (2017) Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest. Ecol Appl 27(2):503–518

    Article  PubMed  Google Scholar 

  • Dai EF, Li SY, Wu Z, Yan HW, Zhao DS (2015a) Spatial pattern of net primary productivity and its relationship with climatic factors in Hilly Red Soil Region of southern China: a case study in Taihe county, Jiangxi province. Geogr Res 34(7):1222–1234 (in Chinese)

    Google Scholar 

  • Dai EF, Wu Z, Wang XF, Fu H, Xi WM, Pan T (2015b) Progress and prospect of research on forest landscape model. J Geogr Sci 25(1):113–128

    Article  Google Scholar 

  • Dai EF, Wu Z, Ge QS, Xi WM, Wang XF (2016) Predicting the responses of forest distribution and aboveground biomass to climate change under RCPs scenarios in southern China. Global Change Biol 22(11):3642–3661

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51(9):723–734

    Article  Google Scholar 

  • de Bruijn A, Gustafson EJ, Sturtevant BR, Foster JR, Miranda BR, Lichti NI, Jacobs DF (2014) Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II. Ecol Model 287:44–57

    Article  Google Scholar 

  • Drummond MA, Loveland TR (2010) Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience 60(4):286–298

    Article  Google Scholar 

  • Duveneck MJ, Scheller RM (2016) Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landscape Ecol 31:669–686

    Article  Google Scholar 

  • Editorial Committee of Chorography of Taihe County (2013) Chorography of Taihe County. China Local Records Publishing, Beijing (in Chinese)

    Google Scholar 

  • Editorial Committee of Forest of China (2000) Forest of China. China Forestry Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Espírito-Santo FDB, Gloor M, Keller M, Malhi Y, Saatchi S, Nelson B, Oliveira Jr RC, Pereira C, Lloyd J, Frolking S, Palace M, Shimabukuro YE, Duarte V, Mendoza AM, López-Gonzalez G, Baker TR, Feldpausch TR, Brienen RJW, Asner GP, Boyd DS, Phillips OL (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5:3434

    Article  CAS  PubMed  Google Scholar 

  • FAO (2016) Global Forest Resources Assessment 2015: how are the world’s forests changing. FAO, Rome

    Google Scholar 

  • Fraser JS, He HS, Shifley SR, Wang WJ, Thompson FR (2013) Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design. Can J For Res 43(10):972–978

    Article  Google Scholar 

  • Gao Q, Yu M (2014) Discerning fragmentation dynamics of tropical forest and wetland during reforestation, urban sprawl, and policy shifts. PLoS ONE 9(11):e113140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giam XL (2017) Global biodiversity loss from tropical deforestation. Proc Natl Acad Sci USA 114(23):5775–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm NB, Chapin FS, Bierwagen B, Gonzalez P, Groffman PM, Luo YQ, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11(9):474–482

    Article  Google Scholar 

  • Gustafson EJ, Shifley SR, Mladenoff DJ, Nimerfro KK, He HS (2000) Spatial simulation of forest succession and timber harvesting using LANDIS. Can J For Res 30:32–43

    Article  Google Scholar 

  • Gustafson EJ, Shvidenko AZ, Sturtevant BR, Scheller RM (2010) Predicting global change effects on forest biomass and composition in south-central Siberia. Ecol Appl 20(3):700–715

    Article  PubMed  Google Scholar 

  • He K, Liu RL (1989) Encyclopedia of Chinese agriculture: forestry volume. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • He HS, Mladenoff DJ (1999) The effects of seed dispersal on the simulation of long-term forest landscape change. Ecosystems 2:308–319

    Article  Google Scholar 

  • He HS, Gustafson EJ, Lischke H (2017) Modeling forest landscapes in a changing climate: theory and application. Landscape Ecol 32(7):1299–1305

    Article  Google Scholar 

  • Houghton RA, Nassikas AA (2018) Negative emissions from stopping deforestation and forest degradation, globally. Global Change Biol 24(1):350–359

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Irwin EG, Bockstael NE (2007) The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation. Proc Natl Acad Sci USA 104(52):20672–20677

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105(33):11823–11826

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulakowski D, Bebi P, Rixen C (2011) The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 120(2):216–225

    Article  Google Scholar 

  • Labs Clark (2006) IDRISI geographic information systems and remote sensing software. Clark Labs, Worcester

    Google Scholar 

  • Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China. J Veg Sci 20:415–423

    Article  Google Scholar 

  • Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos 118(4):495–502

    Article  Google Scholar 

  • Li J, Wang ZL, Lai CG, Wu XQ, Zeng ZY, Chen XH, Lian YQ (2018) Response of net primary production to land use and land cover change in mainland China since the late 1980s. Sci Total Environ 639:237–247

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J, Ostrom E, Ouyang ZY, Provencher W, Redman CL, Schneider SH, Taylor WW (2007) Complexity of coupled human and natural systems. Science 317(5844):1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Kuang WH, Zhang ZX, Xu XL, Qin YW, Ning J, Zhou WC, Zhang SW, Li RD, Yan CZ, Wu SX, Shi XZ, Jiang N, Yu DS, Pan XZ, Chi WF (2014a) Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J Geogr Sci 24(2):195–210

    Article  Google Scholar 

  • Liu SR, Wu SR, Wang H (2014b) Managing planted forests for multiple uses under a changing environment in China. NZ J For Sci 44(Suppl 1):S3

    Google Scholar 

  • Liu YP, Yu DY, Xun B, Sun Y, Hao RF (2014c) The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China. Environ Monit Assess 186(1):135–149

    Article  PubMed  Google Scholar 

  • Luo X, He HS, Liang Y, Wang WJ, Wu ZW, Fraser JS (2014) Spatial simulation of the effect of fire and harvest on aboveground tree biomass in boreal forests of Northeast China. Landscape Ecol 29:1187–1200

    Article  Google Scholar 

  • Ma L, Lian JY, Lin GJ, Cao HL, Huang ZL, Guan DS (2016) Forest dynamics and its driving forces of sub-tropical forest in South China. Sci Rep 6:22561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Xiao XM, Bu RC, Doughty R, Hu YM, Chen BQ, Li XP, Zhao B (2017) Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model. Environ Modell Softw 94:127–139

    Article  Google Scholar 

  • Mi N, Yu GR, Wen XF, Sun XM, Wang SS (2008) Responses of subtropical conifer plantation to future climate change: a simulation study. Chin J Appl Ecol 19(9):1877–1883 (in Chinese)

    Google Scholar 

  • Miller MD (2012) The impacts of Atlanta’s urban sprawl on forest cover and fragmentation. Appl Geogr 34:171–179

    Article  Google Scholar 

  • Mladenoff DJ, He HS (1999) Design and behavior of LANDIS, an object-oriented model of forest landscape disturbance and succession. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Nagaike T (2002) Differences in plant species diversity between conifer (Larix kaempferi) plantations and broad-leaved (Quercus crispula) secondary forests in central Japan. Forest Ecol Manag 168:111–123

    Article  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–18056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Deng LY, Zuo SD, Luo YJ, Shao GF, Wei XH, Hua LZ, Yang YS (2014) Geographical modeling of spatial interaction between human activity and forest connectivity in an urban landscape of southeast China. Landscape Ecol 29(10):1741–1758

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109(1–2):33–57

    Article  CAS  Google Scholar 

  • Robinson DT, Brown DG (2009) Evaluating the effects of land-use development policies on ex-urban forest cover: an integrated agent-based GIS approach. Int J Geogr Inf Sci 23(9):1211–1232

    Article  Google Scholar 

  • Robinson DT, Sun SP, Hutchins M, Riolo RL, Brown DG, Parker DC, Filatova T, Currie WS, Kiger S (2013) Effects of land markets and land management on ecosystem function: a framework for modelling exurban land-change. Environ Modell Softw 45:129–140

    Article  Google Scholar 

  • Rudel TK (2009) Tree farms: driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 26(3):545–550

    Article  Google Scholar 

  • Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu JC, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Global Environ Change 15(1):23–31

    Article  Google Scholar 

  • Scheller RM, Mladenoff DJ (2004) A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecol Model 180(1):211–229

    Article  Google Scholar 

  • Scheller RM, Mladenoff DJ (2005) A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA. Global Change Biol 11(2):307–321

    Article  Google Scholar 

  • Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol Model 201(3–4):409–419

    Article  Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103(35):13116–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuur EAG (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84(5):1165–1170

    Article  Google Scholar 

  • Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA (2016) Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol 53(1):120–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402

    Article  Google Scholar 

  • Seto KC, Guneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci USA 109(40):16083–16088

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Santiago LS, Ma L, Lin GJ, Lian JY, Cao HL, Ye WH (2013) Forest dynamics of a subtropical monsoon forest in Dinghushan, China: recruitment, mortality and the pace of community change. J Trop Ecol 29(02):131–145

    Article  Google Scholar 

  • Sheng HAO, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JF, Zou SQ (2010) The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biol 16(3):1107–1121

    Article  Google Scholar 

  • Sheng WP, Ren SJ, Yu GR, Fang HJ, Jiang CM, Zhang M (2011) Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North-South Transect of Eastern China. J Geogr Sci 21(4):651–665

    Article  Google Scholar 

  • Shifley SR, He HS, Lischke H, Wang WJ, Jin WC, Gustafson EJ, Thompson JR, Thompson FR, Dijak WD, Yang J (2017) The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landscape Ecol 32(7):1307–1325

    Article  Google Scholar 

  • Simons-Legaard E, Legaard K, Weiskittel A (2015) Predicting aboveground biomass with LANDIS-II: a global and temporal analysis of parameter sensitivity. Ecol Model 313:325–332

    Article  Google Scholar 

  • Song HJ, Xu YD, Hao J, Zhao BQ, Guo DG, Shao HB (2017) Investigating distribution pattern of species in a warm-temperate conifer-broadleaved-mixed forest in China for sustainably utilizing forest and soils. Sci Total Environ 578:81–89

    Article  CAS  PubMed  Google Scholar 

  • South Hilly Scientific Expedition, Chinese Academy of Sciences (1982) Natural resource and agricultural regionalization in Taihe County. Energy Press, Beijing (in Chinese)

    Google Scholar 

  • Statistics Bureau of Taihe County (2013b) Statistical Communiqué of the Taihe County on the 2012 National Economic and Social Development. http://pub.jian.gov.cn/jxth/gddt/tjsj/201310/t20131010_1736107.htm. Assessed 3 Sept 2018 (in Chinese)

  • Statistics Bureau of Taihe County (2018) Statistical Communiqué of the Taihe County on the 2017 National Economic and Social Development. http://www.jxth.gov.cn/contents/39/64771.html. Assessed 3 Sept 2018 (in Chinese)

  • Syphard AD, Clarke KC, Franklin J (2007) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecol 22(3):431–445

    Article  Google Scholar 

  • Thompson JR, Foster DR, Scheller RM, Kittredge D (2011) The influence of land use and climate change on forest biomass and composition in Massachusetts, USA. Ecol Appl 21(7):2425–2444

    Article  PubMed  Google Scholar 

  • Thompson JR, Simons-Legaard E, Legaard K, Domingo JB (2016) A LANDIS-II extension for incorporating land use and other disturbances. Environ Modell Softw 75:202–205

    Article  Google Scholar 

  • Viña A, McConnell WJ, Yang HB, Xu ZC, Liu JG (2016) Effects of conservation policy on China’s forest recovery. Sci Adv 2:e1500965

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardle DA, Bardgett RD, Callaway RM, Van der Putten WH (2011) Terrestrial ecosystem responses to species gains and losses. Science 332(6035):1273–1277

    Article  CAS  PubMed  Google Scholar 

  • Wen XF, Yu GR, Sun XM, Li QK, Liu YF, Zhang LM, Ren CY, Fu YL, Li ZQ (2006) Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric For Meteorol 137(3–4):166–175

    Article  Google Scholar 

  • Wiegand T, Revilla E, Moloney K (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19(1):108–121

    Article  Google Scholar 

  • Wimberly MC, Boyte SP, Gustafson EJ (2012) Understanding landscapes through spatial modeling. Springer, New York

    Book  Google Scholar 

  • Wu ZL (1984) Chinese fir. China Forestry Publish House, Beijing

    Google Scholar 

  • Wu Z, Dai EF, Ge QS, Xi WM, Wang XF (2017a) Modelling the integrated effects of land use and climate change scenarios on forest ecosystem aboveground biomass, a case study in Taihe County of China. J Geogr Sci 27(2):205–222

    Article  Google Scholar 

  • Wu Z, Ge QS, Dai EF (2017b) Modeling the relative contributions of land use change and harvest to forest landscape change in the Taihe County, China. Sustainability 9(5):708

    Article  Google Scholar 

  • Xiao JT, Liang Y, He HS, Thompson JR, Wang WJ, Fraser JS, Wu ZW (2016) The formulations of site-scale processes affect landscape-scale forest change predictions: a comparison between LANDIS PRO and LANDIS-II forest landscape models. Landscape Ecol 32(7):1347–1363

    Article  Google Scholar 

  • Xu C, Gertner GZ, Scheller RM (2009) Uncertainties in the response of a forest landscape to global climatic change. Global Change Biol 15(1):116–131

    Article  CAS  Google Scholar 

  • Yin YH, Ma DY, Wu SH (2018) Climate change risk to forests in China associated with warming. Sci Rep 8:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu QZ, Wang SQ, Shi H, Huang K, Zhou L (2014) An evaluation of spaceborne imaging spectrometry for estimation of forest canopy Nitrogen concentration in a subtropical conifer plantation of southern China. J Resour Ecol 5(1):1–10

    Article  CAS  Google Scholar 

  • Zheng H, Ouyang ZY, Xu WH, Wang XK, Miao H, Li XQ, Tian YX (2008) Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecol Manag 255(3–4):1113–1121

    Article  Google Scholar 

  • Zhu XD, He HL, Liu M, Yu GR, Sun XM, Gao YH (2010) Spatio-temporal variation characteristics of photosynthetically active radiation in China in recent 50 years. J Geogr Sci 20(6):803–817

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the anonymous reviewers and the editor who provided constructive advice for this manuscript. This research was funded by the National Natural Science Foundation of China (Grant Nos. 41801068 and 41771097), the Forestry Science and Technology Innovation Project of Guangdong (Grant No. 2018KJCX013), and the National Basic Research Program of China (973 Program) (Grant No. 2015CB452702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Dai, E., Wu, Z. et al. Future forest dynamics under climate change, land use change, and harvest in subtropical forests in Southern China. Landscape Ecol 34, 843–863 (2019). https://doi.org/10.1007/s10980-019-00809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00809-8

Keywords

Navigation