Skip to main content

Advertisement

Log in

Forest habitats in a mixed urban-agriculture mosaic landscape: patterns of mammal occupancy

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Conservation planning for biodiversity within anthropogenic landscapes is crucial given the rate of habitat conversion and human population growth. Investigating anthropogenic impacts on the persistence of biodiversity is key to management decision-making.

Objectives

We investigated the influence of protected areas (PAs), agriculture and urbanisation on the occupancy of mammal communities in an anthropogenic matrix containing indigenous forest fragments of the Coastal Belt of southern KwaZulu-Natal, South Africa.

Methods

We integrated camera-trap mammal data, land-use and human population density within occupancy models, and compared occupancy of individual species across the land-use mosaic.

Results

We modelled occupancy of seven mammal species with sufficient naïve occupancy (> 0.20, range 0.25–0.87). The occupancy of Philantomba monticola was positively influenced by human population size and was higher within urban areas compared with PAs. Although human population size positively affected Hystrix africaeaustralis occupancy, it along with Atilax paludinosus had a lower occupancy within urban areas. Tragelaphus scriptus and Potamochoerus larvatus overall had higher and Sylvicapra grimmia had lower occupancies within PAs.

Main conclusions

Species were variable in their response to the anthropogenic changes in the landscape. For example, occupancy of P. monticola was low within PAs but high in areas where change in land ownership and loss of habitat are threats. For other species, it appeared that the density of infrastructure of the urban landscape, rather than human population density, affected them negatively. However, seasonal differences within different management regimes also provided context-specific influences on occupancy and detectability. We emphasize the importance of natural vegetation patches within anthropogenic landscapes for maintaining native fauna, whilst stressing the value of temporally replicated, multi-species, regional-scale studies when making conservation decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson CM (1981) Subtrooping in a chacma baboon (Papio ursinus) population. Primates 22:445–458

    Article  Google Scholar 

  • Baigas PE, Squires JR, Olson LE, Ivan JS, Roberts EK (2017) Using environmental features to model highway crossing behavior of Canada lynx in the Southern Rocky Mountains. Land Urban Plan 157:200–213

    Article  Google Scholar 

  • Baker PJ, Harris S (2007) Urban mammals: what does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mamm Rev 37:297–315

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1406–5823

    Article  Google Scholar 

  • Berliner D (2009) Systematic conservation planning for South Africa’s forest biome: an assessment of the conservation status of South Africa’s forests and recommendations for their conservation. Dissertation, University of Cape Town

  • Bertzky B, Corrigan C, Kemsey J, Kenney S, Ravilious C, Burgess N (2012) Protected Planet Report 2012: tracking progress towards global targets for protected areas. IUCN and UNEP-WCMC, Gland

    Google Scholar 

  • Bibby C, Burgess N, Hill D (2000) Bird census techniques. Academic Press, London

    Google Scholar 

  • Bowland AE, Perrin MR (1995) Temporal and spatial patterns in blue duikers Philatomba monticola and red duikers Cephalophus natalensis. J Zool 237:487–498

    Article  Google Scholar 

  • Bradshaw CJA, Craigie I, Laurance WF (2015) National emphasis on high-level protection reduces risk of biodiversity decline in tropical forest reserves. Biol Conserv 190:115–122

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond RE, Bomhard B (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2:e197

    Article  PubMed  PubMed Central  Google Scholar 

  • Clare JDJ, Anderson EM, MacFarland DM (2015) Predicting bobcat abundance at a landscape scale and evaluating occupancy as a density index in central Wisconsin. J Wildlife Manag 79:469–480

    Article  Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21

    Article  Google Scholar 

  • Concepción ED, Obrist MK, Moretti M, Altermatt F, Baur B, Nobis MP (2016) Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urban Ecosys 19:225–242

    Article  Google Scholar 

  • Cooper KH (1985) The conservation status of indigenous forests in Transvaal, Natal and Orange Free State. Wildlife Society of South Africa, Durban

    Google Scholar 

  • Cooper SM, Melton D (1988) The bushpig as a problem animal in sugar cane. S Afr J Wildl Res 18:149–153

    Google Scholar 

  • Corbet NU, Van Aarde RJ (1996) Social organization and space use in the Cape porcupine in a Southern African savanna. Afr J Ecol 34:1–14

    Article  Google Scholar 

  • Dudley N (2008) Guidelines for applying protected area management categories. IUCN, Gland

    Book  Google Scholar 

  • Dupras J, Marull J, Parcerisas L, Coll F, Gonzalez A, Girard M, Tello E (2016) The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ Sci Pol 58:61–73

    Article  Google Scholar 

  • Eeley H, Lawes M, Piper S (1999) The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. J Biogeogr 26:595–617

    Article  Google Scholar 

  • Ehlers Smith YC, Ehlers Smith DA, Seymour CL, Thébault E, van Veen FJF (2015) Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landscape Ecol 30:1225–1239

    Article  Google Scholar 

  • Ehlers Smith YC, Ehlers Smith DA, Ramesh T, Downs CT (2017) The importance of microhabitat structure in maintaining forest mammal diversity and abundance in a mixed land-use mosaic. Biodivers Conserv. doi:10.1007/s10531-017-1360-6

    Google Scholar 

  • ESRI (2011) ArcGIS Desktop 10.2. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt D (1994) Non flying mammals and landscape changes in the tropical rain forest region of Los Tuxtlas, Mexico. Ecography 17:229–241

    Article  Google Scholar 

  • Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Soft 43:1–23

    Article  Google Scholar 

  • Fox J (2003) Effect displays in R for generalised linear models. J Stat Soft 8(15):1–27

    Article  Google Scholar 

  • Garden JG, McAlpine CA, Possingham HP (2010) Multi-scaled habitat considerations for conserving urban biodiversity: native reptiles and small mammals in Brisbane, Australia. Landscape Ecol 25:1013–1028

    Article  Google Scholar 

  • Geldenhuys C, MacDevette D (1989) Conservation status of coastal and montane evergreen forest. In: Huntley BJ (ed) Biotic Diversity in Southern Africa. Oxford University Press, Oxford, pp 224–238

    Google Scholar 

  • Gelman A, Ys S, Yajima M, Hill J, Pittau M G, Zheng T, Dorie V (2009) Arm: Data analysis using regression and multilevel/hierarchical models. R package

  • GeoTerra Image (2014) The 2013–2014 South African National Land-cover dataset

  • Gilbert-Norton L, Wilson R, Stevens JR, Beard KH (2010) A meta-analytic review of corridor effectiveness. Conserv Biol 24:660–668

    Article  PubMed  Google Scholar 

  • Goad EH, Pejchar L, Reed SE, Knight RL (2014) Habitat use by mammals varies along an exurban development gradient in northern Colorado. Biol Conserv 176:172–182

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Grande-Vega M, Farfan M, Ondo A, Fa JE (2015) Decline in hunter offtake of blue duikers in Bioko Island, Equatorial Guinea. Afr J Ecol 54:49–58

    Article  Google Scholar 

  • Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones K (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecol Appl 15:1893–1905

    Article  Google Scholar 

  • Hevia V, Carmona C, Azcárate FM, Torralba M, Alcorlo M et al (2016) Effects of land use on taxonomic and functional diversity: a cross-taxon analysis in a Mediterranean landscape. Oecologia 181:959–970

    Article  PubMed  Google Scholar 

  • Hockings M (2003) Systems for assessing the effectiveness of management in protected areas. Bioscience 53:823–832

    Article  Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SH, Carpenter KE, Collen B (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP (2001) Environmental impacts of urban sprawl: a survey of the literature and proposed research agenda. Environ Plann A 33:717–735

    Article  Google Scholar 

  • Johnson HE, Sushinsky JR, Holland A, Bergman EJ, Balzer T, Garner J, Reed SE (2016) Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob Change Biol. doi:10.1111/gcb.13385

    Google Scholar 

  • Kuehne LM, Olden JD (2016) Environmental drivers of occupancy and detection of olympic mud minnow. Trans Am Fish Soc 145:17–26

    Article  Google Scholar 

  • Kyba CCM, Hölker F (2013) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landscape Ecol 28:1637–1640

    Article  Google Scholar 

  • Lannoy L, Gaidet N, Chardonnet P, Fanguinoveny M (2003) Abundance estimates of duikers through direct counts in a rain forest, Gabon. Afr J Ecol 41:108–110

    Article  Google Scholar 

  • Lawes MJ (1990) The distribution of the samango monkey (Cercopithecus mitis erythrachus Peters, 1852 and Cercopithecus mitis labiatus I. Geoffroy, 1843) and forest history in Southern Africa. J Biogeogr 17:669–680

    Article  Google Scholar 

  • Lawes MJ (2002) The forest eco-region. In: Le Roux J (ed) The biodiversity of South Africa: indicators, trends and human impacts. Struik Publishers, Cape Town, pp 8–10

    Google Scholar 

  • Lawes MJ, Mealin PE, Piper SE (2000) Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented afromontane forest in South Africa. Conserv Biol 14:1088–1098

    Article  Google Scholar 

  • Lawes MJ, Eeley HAC, Findlay NJ, Forbes D (2007) Resilient forest faunal communities in South Africa: a legacy of palaeoclimatic change and extinction filtering? J Biogeogr 34:1246–1264

    Article  Google Scholar 

  • Le Grange M (1986) The mechanical control of bushpig, Potamochoerus porcus, in Zimbabwe. In: Proceedings of the Twelfth Vertebrate Pest Conference. Nebraska, University of Nebraska

  • Lyra-Jorge MC, Ribeiro MC, Ciocheti G, Tambosi LR, Pivello VR (2009) Influence of multi-scale landscape structure on the occurrence of carnivorous mammals in a human-modified savanna, Brazil. Eur J Wildl Res 56:359–368

    Article  Google Scholar 

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agric Biol Environ S 9:300–318

    Article  Google Scholar 

  • MacKenzie DI, Nichols GB, Lachman S, Droege JA, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL (2006) Occupancy estimation and modeling. Inferring patterns and dynamics of species occurrence. Elsevier, Oxford

    Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  PubMed  Google Scholar 

  • Martinoli A, Preatoni D, Galanti V, Codipietro P, Kilewo M, Fernandes CA, Wauters LA, Tosi G (2006) Species richness and habitat use of small carnivores in the Arusha National Park (Tanzania). Biodivers Conserv 15:1729–1744

    Article  Google Scholar 

  • Mcalpine CA, Mcalpine CA, Bowen ME, Callaghan JG, Lunney D, Rhodes JR, Mitchell DL, Pullar DV, Poszingham HP (2006) Testing alternative models for the conservation of koalas in fragmented rural–urban landscapes. Austral Ecol 31:529–544

    Article  Google Scholar 

  • McDonald PJ, Griffiths AD, Nano CEM, Dickman CR, Ward SJ, Luck GW (2015) Landscape-scale factors determine occupancy of the critically endangered central rock-rat in arid Australia: the utility of camera trapping. Biol Conserv 191:93–100

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • Merenlender AM, Reed SE, Heise KL (2009) Exurban development influences woodland bird composition. Landscape Urban Plan 92:255–263

    Article  Google Scholar 

  • Midgley JJ, Cowling RM, Seydack AHW, van Wyk GF (1997) Forest. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 278–299

    Google Scholar 

  • Msuha MJ, Carbone C, Pettorelli N, Durant SM (2012) Conserving biodiversity in a changing world: land use change and species richness in northern Tanzania. Biodivers Conserv 21:2747–2759

    Article  Google Scholar 

  • Mucina L, Rutherford MC (2011) The vegetation of South Africa, Lesotho and Swaziland Strelitzia 19. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Mulwa RK, Böhning-Gaese K, Schleuning M (2012) High bird species diversity in structurally heterogeneous farmland in western Kenya. Biotropica 44:801–809

    Article  Google Scholar 

  • Newing H (2001) Bushmeat hunting and management: implications of duiker ecology and interspecific competition. Biodivers Conserv 10:99–108

    Article  Google Scholar 

  • Noon BR, Bailey LL, Sisk TD, Mckelvey KS (2012) Efficient species-level monitoring at the landscape scale. Conserv Biol 26:432–441

    Article  PubMed  Google Scholar 

  • O’Connell AF Jr, Talancy NW, Bailey LL, Sauer JR, Cook R, Gilbert AT (2006) Estimating site occupancy and detection probability parameters for meso-and large mammals in a coastal ecosystem. J Wildl Manag 70:1625–1633

    Article  Google Scholar 

  • Olivier PI, van Aarde RJ, Lombard AT (2013) The use of habitat suitability models and species-area relationships to predict extinction debts in coastal forests, South Africa. Divers Distrib 19:1353–1365

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Piquer-Rodríguez M, Kuemmerle T, Alcaraz-Segura D, Zurita-Milla R, Cabello J (2012) Future land use effects on the connectivity of protected area networks in southeastern Spain. J Nature Conserv 20:326–336

    Article  Google Scholar 

  • Quinn JE, Brandle JR, Johnson RJ (2012) A farm-scale biodiversity and ecosystem services assessment tool: the healthy farm index. Int J Agri Sustain 11:1–17

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188

    Article  PubMed  Google Scholar 

  • Ramesh T, Downs CT (2013) Impact of farmland use on population density and activity patterns of serval in South Africa. J Mamm 94:1460–1470

    Article  Google Scholar 

  • Ramesh T, Downs CT (2014) Modelling large spotted genet (Genetta tigrina) and slender mongoose (Galerella sanguinea) occupancy in a heterogeneous landscape of South Africa. Mamm Biol 79:331–337

    Article  Google Scholar 

  • Ramesh T, Downs CT (2015) Impact of land use on occupancy and abundance of terrestrial mammals in the Drakensberg Midlands, South Africa. J Nature Conserv 23:9–18

    Article  Google Scholar 

  • Ramesh T, Kalle R, Rosenlund H, Downs CT (2016) Native habitat and protected area size matters: preserving mammalian assemblages in the Maputaland Conservation Unit of South Africa. For Ecol Manag 360:20–29

    Article  Google Scholar 

  • Rich LN, Miller DAW, Robinson HS, McNutt JW, Kelly MJ (2016) Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J Appl Ecol 53:1225–1235

    Article  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Roland C, Schmidt JH, Nicklen E (2013) Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska. Ecol Monogr 83:19–48

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schmitt CB, Belokurov A, Besançon C, Boisrobert L, Burgess ND (2009) Global ecological forest classification and forest protected area gap analysis. UNEP, WCMC, Freiburg

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2006) Global Biodiversity Outlook 2. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2010) Global Biodiversity Outlook 3. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Skinner JDJ, Chimimba CTC (2005) The mammals of the Southern African sub-region. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Statistics South Africa (2013) Statistical release. Mid-year population estimates 2013. Statistics South Africa, Pretoria

  • Struhsaker T, Struhsaker P, Siex K (2005) Conserving Africa’s rain forests: problems in protected areas and possible solutions. Biol Conserv 123:45–54

    Article  Google Scholar 

  • The Weather Company LLC (2017) Weather history for Margate 01 June 2014–31 May 2016. https://www.wunderground.com/history/airport/FAMG/2017/6/2/DailyHistory.html?req_city=Margate&req_statename=South%20Africa. Accessed 02 June 2017

  • Theobald DM, Spies T, Kline J, Maxwell B, Hobbs NT, Dale VH (2005) Ecological support for rural land-use planning. Ecol Appl 15:1906–1914

    Article  Google Scholar 

  • Tobler MW, Hartley AZ, Carrillo-Percastegui SE, Powell GVN (2015) Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J Appl Ecol 52:413–421

    Article  Google Scholar 

  • Toger M, Malkinson D, Benenson I, Czamanski D (2016) The connectivity of Haifa urban open space network. Environ Plann B 43:848–870

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Article  Google Scholar 

  • UNEP-WCMC (2010) The world database on Protected Areas. UNEP-WCMC, Cambridge

    Google Scholar 

  • Venter J, Seydack A, Ehlers Smith Y, Uys R, Child M (2016) A conservation assessment of Philantomba monticola. In: Roxburgh L, Davies-Mostert H, Child MF (eds) The Red List of mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, Johannesburg

    Google Scholar 

  • Vié JC, Hilton-Taylor C, Stuart SN (2009) Wildlife in a changing world—an analysis of the 2008 IUCN Red List of Threatened Species. IUCN, Gland

    Google Scholar 

  • Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Article  Google Scholar 

  • Vincent J (1962) The distribution of ungulates in Natal. Ann Cape Prov Mus 2:110–117

    Google Scholar 

  • Wang Y, Allen ML, Wilmers CC (2015) Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol Conserv 190:23–33

    Article  Google Scholar 

  • Watling JA, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Glob Ecol Biogeogr 20:209–217

    Article  Google Scholar 

  • Weyland F, Baudry J, Ghersa CM (2012) A fuzzy logic method to assess the relationship between landscape patterns and bird richness of the Rolling Pampas. Landscape Ecol 27:869–885

    Article  Google Scholar 

  • Wilson JD, Anderson R, Bailey S, Chetcuti J, Cowie NR, Hancock MH, Quine CP, Russell N (2014) Modelling edge effects of mature forest plantations on peatland waders informs landscape-scale conservation. J Appl Ecol 51:204–213

    Article  Google Scholar 

  • Wittemyer G, Elsen P, Bean WT, Burton ACO, Brashares JS (2008) Accelerated human population growth at protected area edges. Science 321:123–126

    Article  CAS  PubMed  Google Scholar 

  • Wright WJ, Irvine KM, Rodhouse TJ (2016) A goodness-of-fit test for occupancy models with correlated within-season revisits. Ecol Evol 6:5404–5415

    Article  PubMed  PubMed Central  Google Scholar 

  • Youngentob K, Wood J, Lindenmayer D (2013) The response of arboreal marsupials to landscape context over time: a large-scale fragmentation study revisited. J Biogeogr 40:2082–2093

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their manuscript input and Ezemvelo KZN Wildlife for granting permission to conduct research within their PA network. We thank all private landowners for allowing us access, the assistance of the Ezemvelo KZN honorary officers as well as the support from local conservancies. The College of Agriculture, Engineering and Science, University of KwaZulu-Natal, the Gay Langmuir Trust, Hans Hoheisen Trust, and the Whitley Wildlife Conservation Trust kindly provided financial support for the research. The National Research Foundation (ZA) provided financial support for the doctoral scholarship of YC Ehlers Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen T. Downs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlers Smith, Y.C., Ehlers Smith, D.A., Ramesh, T. et al. Forest habitats in a mixed urban-agriculture mosaic landscape: patterns of mammal occupancy. Landscape Ecol 33, 59–76 (2018). https://doi.org/10.1007/s10980-017-0580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0580-1

Keywords

Navigation