Skip to main content

Advertisement

Log in

Direct and indirect effects of agricultural intensification on a host-parasitoid system on the ribwort plantain (Plantago lanceolata L.) in a landscape context

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Intensification of land use is known as a major driver of worldwide decline in biodiversity. Trophic interactions might be especially affected by a changing landscape structure due to agricultural intensification.

Objective

In this study we investigated the effects of increasing land use intensity on a tritrophic system at different spatial scales in a landscape context.

Methods

We examined two weevil species, Mecinus labilis Herbst and M. pascuorum Gyllenhal, as well as their common parasitoid, Mesopolobus incultus Walker, living on a common native herb, the ribwort plantain (Plantago lanceolata L.), at 76 sites in three geographic regions in Germany. The effect of land use intensity on species abundances was analysed across a range of spatial scales (100–2000 m) around the study sites.

Results

In all three regions and across most spatial scales, an increasing proportion of intensively managed grasslands in the surrounding landscape directly negatively influenced herbivore abundance. An increasing proportion of semi-natural habitats had a direct positive influence on herbivore abundance. The abundance of M. labilis was best explained at radii of r = 1500–2000 m, that of M. pascuorum at r = 100–500 m. The parasitoid, M. incultus, was indirectly influenced by land use intensity via the density of its two hosts.

Conclusion

Agricultural intensification of grasslands can profoundly affect the abundance of their herbivorous and entomophagous fauna at landscape scale. This may have important implications for landscape management and the conservation of higher trophic level organisms in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekötter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, Van Wingerden WKRE, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis in R. Springer, New York

    Google Scholar 

  • Braschler B, Marini L, Thommen GH, Baur B (2009) Effects of small-scale grassland fragmentation and frequent mowing on population density and species diversity of orthopterans: a long-term study. Ecol Entomol 34:321–329

    Article  Google Scholar 

  • Caballero-López B, Bommarco R, Blanco-Moreno JM, Sans FX, Pujade-Villar J, Rundlöf M, Smith HG (2012) Aphids and their natural enemies are differently affected by habitat features and local and landscape scales. Biol Control 63:222–229

    Article  Google Scholar 

  • Cease AJ, Elser J, Ford C, Hao S, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467

    Article  CAS  PubMed  Google Scholar 

  • Clough J, Kruess A, Tscharntke T (2007) Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. J Appl Ecol 44:22–28

    Article  Google Scholar 

  • Crawley MJ (2012) The R book, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  • Daoust SP, Bélisle M, Savage J, Robillard A, Baeta R, Brodeur J (2012) Direct and indirect effects of landscape structure on a tri-trophic system within agricultural lands. Ecosphere 3(11). Article Nr. UNSP 94

  • Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agr Ecosys Environ 98:321–329

    Article  Google Scholar 

  • Dickason EA (1968) Observations on the biology of Gymnaetron pascuorum (Gyll.) (Coleoptera: Curculionidae). Coleopts Bull 22:11–15

    Google Scholar 

  • Dierschke H, Briemle G (2002) Kulturgrasland: Wiesen, Weiden und verwandte Stauden-fluren. Verlag Eugen Ulmer GmbH & Co., Stuttgart

    Google Scholar 

  • Donald PF, Sanderson FJ, Burfield IJ, van Bommel PJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agr Ecosys Environ 116:189–196

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138

    Article  Google Scholar 

  • Dyer LA, Coley PD (2002) Tritrophic interactions in tropical versus temperate communities. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, MA, pp 67–88

    Chapter  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze KG, Göttingen

    Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser W (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  • Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241

    Article  CAS  PubMed  Google Scholar 

  • Gagic V, Tscharntke T, Dormann CF, Gruber B, Wilstermann A, Thies C (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc R Soc B 278:2946–2953

    Article  PubMed  PubMed Central  Google Scholar 

  • Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, Jong HD, Simons NK, Klein A-M, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Appl 19:143–154

    Article  CAS  PubMed  Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S, Hsieh HY, Iverson AL, Batary P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281:20141358

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock C, Wäschke N, Schumacher U, Linsenmair KE, Meiners T, Obermaier E (2013) Fertilizer application decreases insect abundance on Plantago lanceolata: a large-scale experiment in three geographic regions. Arthropod Plant Interact 7:147–158

    Article  Google Scholar 

  • Heisswolf A, Reichmann S, Poethke HJ, Schröder B, Obermaier E (2009) Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv 13:165–175

    Article  Google Scholar 

  • Hejcman M, Hejcmanová P, Pavlu V, Benes J (2013) Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–363

    Article  Google Scholar 

  • Hendrickx F, Malefait J-P, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Herbst C, Wäschke N, Halboth I, Reschke S, Barto K, Meiners T, Obermaier E (2013) Land use intensification influences higher trophic levels without affecting the availability of the host plant. Entomol Exp Appl 147:269–281

    Article  Google Scholar 

  • Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman & Hall, London, pp 313–323

    Chapter  Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez MD (1999) Trophic rank and the species-area relationship. Ecology 80:1495–1504

    Article  Google Scholar 

  • Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B 278:3444–3451

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500

    Article  PubMed  Google Scholar 

  • Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ, Didham K (2012) Agricultural intensification drives landscape-context effects on host-parasitoid interactions in agroecosystems. J Appl Ecol 49:706–714

    Google Scholar 

  • Kruess A (2003) Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 26:283–290

    Article  Google Scholar 

  • Lefcheck JS (2016) Piecewise SEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Liu Y, Rothenwoehrer C, Scherber C, Batáry P, Elek Z, Steckel J, Erasmi S, Tscharntke T, Westphal C (2014) Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecol 29:529–540

    Article  Google Scholar 

  • Lohse GA (1983) Unterfamilie Mecininae. In: Freude H, Harde KW, Lohse GA (eds) Die Käfer Mitteleuropas, Band 11. Goecke & Evers Verlag, Krefeld

    Google Scholar 

  • Marino PC, Landis DA (1996) Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol Appl 6:276–284

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS v3: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Mohd Norowi HM, Perry JN, Powell W, Rennolls K (1999) The effect of spatial scale on interactions between two weevils and their food plant. Acta Oecol 20:537–549

    Article  Google Scholar 

  • Mohd Norowi HM, Perry JN, Powell W, Rennolls K (2000) The effect of spatial scale on interactions between two weevils and their parasitoid. Ecol Entomol 25:188–196

    Article  Google Scholar 

  • Obermaier E, Zwölfer H (1999) Plant quality or quantity? Host exploitation strategies in three Chrysomelidae species associated with Asteraceae host plants. Entomol Exp Appl 92:165–177

    Article  Google Scholar 

  • Purtrauf T, Dauber J, Wolters V (2005) The response of carabids to landscape simplification differs between trophic groups. Oecologia 142:458–464

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Rheinheimer J, Hassler M (2013) Die Rüsselkäfer Baden-Württembergs. Verlag Regionalkultur, Heidelberg

    Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Shipley B (2004) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368

    Article  PubMed  Google Scholar 

  • Shipley B (2013) The AIC model selection method applied to path analytic models compared using ad-separation test. Ecology 94:560–564

    Article  PubMed  Google Scholar 

  • Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Tscharntke T (2001) Pollination, seed set and seed predation on a landscape scale. Proc R Soc Lond B 268:1685–1690

    Article  CAS  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25

    Article  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wagner TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Frund J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • van Nouhuys S, Hanski I (2002) Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 124–147

    Chapter  Google Scholar 

  • Veres A, Petit S, Conord C, Lavigne C (2013) Does landscape composition affect pest abundance and their control by natural enemies? a review. Agric Ecosyst Environ 166:110–117

    Article  Google Scholar 

  • Wäschke N, Hancock C, Hilker M, Obermaier E, Meiners T (2015) Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape? Oecologia 179:281–292

    Article  PubMed  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin

    Book  Google Scholar 

  • Wrbka T, Erb K, Schulz NB, Peterseil J, Hahn C, Haberl H (2004) Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21:289–306

    Article  Google Scholar 

Download references

Acknowledgements

We thank the managers of the three Exploratories, Swen Renner, Sonja Gockel, Andreas Hemp and Martin Gorke and Simone Pfeiffer for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Jens Nieschulze for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” [OB 185/2-1, ME 1810/5-1]. Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). We want to thank the contributing project InsectScale, Peter Sprick for the help with snout beetle species identification, Stefan Vidal and Lars Krogmann for identification of the hatched parasitoids. Furthermore we thank Andrea Hilpert, Matthias Jäger, Nadine Kunkel, Daniel Roth and Karen Wolf for their fieldwork assistance and help in the lab. Finally, we want to thank two anonymous reviewers for their valuable comments on an earlier version of the manuscript and Karen Voss for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Obermaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, C., Arnold-Schwandner, S., Meiners, T. et al. Direct and indirect effects of agricultural intensification on a host-parasitoid system on the ribwort plantain (Plantago lanceolata L.) in a landscape context. Landscape Ecol 32, 2015–2028 (2017). https://doi.org/10.1007/s10980-017-0562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0562-3

Keywords

Navigation