Skip to main content

Advertisement

Log in

The effect of landscape structure on two species of different trophic levels in an arid environment

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Insect species of different trophic level will respond differently to landscape configuration.

Objective

In this context we explore the way landscape structure affects the distribution and abundance of the whitefly Siphoninus phillyreae and its predator Clitostethus arcuatus in olive orchards.

Methods

Adult individuals of these two species were collected using sticky traps placed in 12 olive host patches in Argentina. Host patches were detected and quantified using Landsat 5 TM images. Different landscape metrics were estimated for the study area land covers. PLSR analysis techniques were employed to relate the mean abundance of the studied species and the landscape measures.

Results

The Landsat land use estimations showed that most of the vegetation is limited to particular irrigated spots or urban areas. 89 % of the land cover is exposed soil, 10 % is xerophytic vegetation, 0.56 % is introduced urban vegetation and 0.31 % is occupied by olive orchards. S. phillyreae was positively affected by total area of olive orchards, followed by total area of urban vegetation, and negatively affected by the perimeter of olive focal patch and the proximity of other urban vegetation patches. C. arcuatus was positively affected by the perimeter of the host patch, the total area of olive orchards and the mean proximity of urban vegetation patches.

Conclusion

We concluded that although the total area of the herbivore host was the most influential variable affecting the two species, each of them was affected in different way by other landscape elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-Rabou S (2006) Biological control of the pomegranate whitefly, Siphoninus phillyreae (Homoptera: Aleyrodidae: Aleyrodinae) by using the bioagent, Clitostethus arcuatus (Coleoptera: Coccinellidae). J Entomol 3(4):331–335

    Google Scholar 

  • Agekian NG (1977) Clitostethus arcuatus Rossi (Coleoptera, Coccinellidae)—predator of citrus whitefly in Adzharia. Entomologicheskoye Obozrenie 56:31–33

    Google Scholar 

  • Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Google Scholar 

  • Bach CE (1988a) Effect of host plant patch size on herbivore density: patterns. Ecology 6:1090–1102

    Google Scholar 

  • Bach CE (1988b) Effect of host plant patch size on herbivore density: underlying mechanisms. Ecology 69:1103–1117

    Google Scholar 

  • Bascompte J, Sole RV (1998) Effects of habitat destruction in a prey predator metapopulation model. J Theor Biol 195:383–393

    PubMed  Google Scholar 

  • Bathon VH, Pietrzik J (1986) On the food consumption of Clitostethus arcuatus (Rossi) (Col.: Coccinellidae), a predator of Aleurodes proletella L. (Hom.: Aleyrodidae). J Appl Entomol 102:321–326

    Google Scholar 

  • Bellows TS, Paine TB, Arakawa KY, Meisenbacher C, Leddy P, Kabashim J (1990) Biological control sought for ash whitefly. Calif Agric (Berkeley) 44:4–6

    Google Scholar 

  • Bellows TS, Paine TD, Gerling D (1992) Development, survival, longevity, and fecundity of Clitostethus arcuatus (Coleoptera: Coccinellidae) on Siphoninus phillyreae (Homoptera: Aleyrodidae) in the laboratory. Environ Entomol 21(3):659–663

    Google Scholar 

  • Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79:517–533

    Google Scholar 

  • Biurrun F, Agüero N, Walter D, Teruel, DF (2012) Consideraciones fitogeográficas sobre la vegetación de los llanos de La Rioja. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina

  • Boivin G, Roger C, Coderre D, Wajnberg E (2010) Learning affects prey selection in larvae of a generalist coccinellid predator. Entomol Exp Appl 135:48–55

    Google Scholar 

  • Bommarco R, Banks JE (2003) Scale as modifier in vegetation diversity experiments: effects on herbivores and predators. Oikos 102:440–448

    Google Scholar 

  • Bowers MA, Matter SF (1997) Landscape ecology of mammals: relationships between density and patch-size. J Mammal 78:999–1013

    Google Scholar 

  • Bukovinszky T, Potting RPJ, Clough Y, van Lenteren JC, Vet LEM (2005) The role of pre- and post-alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos 109:435–446

    Google Scholar 

  • Byrne D (1999) Migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Agric For Meteorol 97:309–316

    Google Scholar 

  • Cantrell RS, Cosner C, Fagan WF (2001) How predator incursions affect critical patch size: the role of the functional response. Am Nat 158:368–375

    CAS  PubMed  Google Scholar 

  • Cantrell RS, Cosner C, Fagan WF (2002) Habitat edges and predator—prey interactions: effects on critical patch size. Math Biosci 175:31–55

    PubMed  Google Scholar 

  • Capman WC, Batzli GO, Simms LE (1990) Responses of the common sooty wing skipper to patches of host plants. Ecology 71:1430–1440

    Google Scholar 

  • Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and metaanalysis. Conserv Biol 16:306–318

    Google Scholar 

  • Cheng Q, Sun DW (2005) Application of PLSR in correlating physical and chemical properties of pork ham with different cooling methods. Meat Sci 70:691–698

    CAS  PubMed  Google Scholar 

  • Cohen S (1990) Epidemiology of whitefly-transmitted viruses. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, UK, pp 210–225

    Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of classifications of remotely sensed data: principles and practices. Lewis Publishers (CRC Press Inc.), New York, p 209

    Google Scholar 

  • Connor EF, Coutney AC, Yoder JM (2000) Individuals–area relationship: the relationship between animal population density and area. Ecology 81:734–748

    Google Scholar 

  • Crist TO, Guertin DS, Wiens JA, Milne BT (1992) Animal movement in heterogeneous landscapes: an experiment with Eleodes beetles in shortgrass prairie. Funct Ecol 6:536–544

    Google Scholar 

  • Cronin JT (2003) Movement and spatial population structure of a prairie planthopper. Ecology 84:1179–1188

    Google Scholar 

  • Cronin JT, Haynes KJ (2004) An invasive plant promotes unstable host–parasitoid patch dynamics. Ecology 85:2772–2782

    Google Scholar 

  • Eastman RJ (2006) IDRISI Andes guide to GIS and image processing. Clark Labs, Clark University, Worcester, MA, p 328

    Google Scholar 

  • Elliott NC, Kieckhefe RW, Michels GJ, Giles KL (2002) Predator abundance in alfalfa fields in relation to aphids, within-field vegetation, and landscape matrix. Environ Entomol 31:253–260

    Google Scholar 

  • Elzinga JA, van Nouhuys S, van Leeuwena DJ, Biere A (2007) Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl Ecol 8:75–88

    Google Scholar 

  • Fahrig L, Jonsen I (1998) Effect of habitat patch characteristics on abundance and diversity of insects in an agricultural landscape. Ecosystems 1:197–205

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Gasparini ML, Holgado MG, Rodriguez F (2007) Presencia de Clitostethus arcuatus (Coleoptera: Coccinellidae) sobre olivos infestados con Siphoninus phillyreae (Hemiptera: Aleyrodidae) en Argentina. Revista de la Sociedad Entomológica Argentina 66:169–170

    Google Scholar 

  • Gerling D (1990) Natural enemies of white flies: predators and parasitoids. In: Gerling D (ed) White flies: their bionomics, pest status and management. Intercept, Andover, Hants, UK, pp 147–185

    Google Scholar 

  • Gerling D, Alomar O, Arno J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799

    Google Scholar 

  • Gerling D, Rottenberg O, Bellows TSJ (2004) Role of natural enemies and other factors in the dynamics of field populations of the whitefly Siphoninus phillyreae (Haliday) in introduced and native environments. Biol Control 31:199–209

    Google Scholar 

  • González G (1996) Los Coccinellidae de Chile. http://www.coccinellidae.cl. Accessed 18 March 2015

  • González A, Lawton JH, Gilbert FSM, Blackburn T, Evans-Freke I (1998) Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281:2045–2047

    PubMed  Google Scholar 

  • Grez AA, Zaviezo T, Rios M (2005) Ladybird (Coleoptera: Coccinellidae) dispersal in experimental fragmented alfalfa landscapes. Eur J Entomol 102:209–216

    Google Scholar 

  • Grilli MP (2010) The role of landscape structure on the abundance of a disease vector planthopper: a quantitative approach. Landscape Ecol 25:383–394

    Google Scholar 

  • Grilli MP, Bruno MA (2007) Regional abundance of a planthopper pest: the effect of host patch area and configuration. Entomol Exp Appl 122:133–143

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Google Scholar 

  • Gustafson E, Parker GR (1992) Relationships between land cover proportion and indices of landscape spatial pattern. Landscape Ecol 7:101–110

    Google Scholar 

  • Hamback PA, Englund G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett 8:1057–1065

    Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Google Scholar 

  • Hanski I (1999) Metapopulation Ecology. Oxford University Press, New York

    Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics, and evolution. Academic, San Diego, CA

    Google Scholar 

  • Hodek I, Evans EW (2012) Food relationships. In: Hodek I, van Emden HF and Honek A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, UK, pp 141–274

  • Hodek I, Honek A (2009) Scale insects, mealybugs, whiteflies and psyllids (Hemiptera, Sternorrhyncha) as prey of ladybirds. Biol Control 51:232–243

  • Holgado M, Saez C, Llera J, Gasparini M, Anzorena G, Bataglia M, Cid P, Pasquale N (2005) Fluctuación poblacional de Siphoninus phillyreae (Hemiptera-Aleyrodidae) en olivos de Mendoza. Libro de Resúmenes VI Congreso Argentino de Entomología, San Miguel de Tucumán, Argentina

    Google Scholar 

  • Holt RD (2002) Food webs in space: on the interplay of dynamic instability and spatial processes. Ecol Res 17:261–273

    Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species–area relationship. Ecology 80:1495–1504

    Google Scholar 

  • Honek A (2012) Distribution and habitats. In: Hodek I, van Emden HF and Honek A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwel, UK, pp 110–140

  • Inc StatSoft (2001) STATISTICA for Windows (computer program manual). StatSoft Inc., Tulsa, Oklahoma (StatSoft Inc., 2300 East 14th Street, Tulsa, Oklahoma)

    Google Scholar 

  • Indec (2002) Censo Nacional Agropecuario 2002. http://www.indec.mecon.gov.ar/agropecuario/cna_principal.asp. Accessed 18 March 2015

  • Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12:185–197

    Google Scholar 

  • Katsoyannos P, Ifantis K, Kontodimas DC (1997) Phenology, population trend and natural enemies of Aleurothrixus floccosus (Hom.: Aleyrodidae) at a newly invaded area in Athens, Greece. Entomophaga 42:619–628

    Google Scholar 

  • Kondoh M (2003) Habitat fragmentation resulting in overgrazing by herbivores. J Theor Biol 225:453–460

    PubMed  Google Scholar 

  • Lahti DC (2001) The “edge effect on nest predation” hypothesis after twenty years. Biol Conserv 99:365–374

    Google Scholar 

  • Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Wiley Interscience, New York

    Google Scholar 

  • Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55:77–92

    Google Scholar 

  • Liotta G (1981a) La mosca bianca fioccosa degli agrumi. Informatore Fitopatologico 32:11–15

    Google Scholar 

  • Liotta G (1981b) Osservazioni bio-ecologiche su Clitostethus arcuatus (Rossi) (Col. Coccinellidae) in Sicilia. Redia 64:173–185

    Google Scholar 

  • MacArthur RH, Levins R (1964) Competition, habitat selection, and character displacement in a patchy environment. Proc Natl Acad Sci USA 51:1207–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, New York

    Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW-GTR-351. USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 18 March 2015

  • Melian CJ, Bascompte J (2002) Food web structure and habitat loss. Ecol Lett 5:37–46

    Google Scholar 

  • Mills NJ (1981) Essential and alternative foods for British Coccinellidae (Coleoptera). Entomol Gaz 32:197–202

    Google Scholar 

  • Milne BT, Turner MG, Wiens JA, Johnson AR (1992) Interactions between the fractal geometry of landscapes and allometric herbivory. Theor Popul Biol 41:337–353

    Google Scholar 

  • Morrison JA (1996) Infection of Juncus dichotomus by the smut fungus Cintractia junci: an experimental field test of the effects of neighbouring plants, environment, and host plant genotype. J Ecol 84:691–702

    Google Scholar 

  • Murphy HT, Lovett-Doust J (2004) Context and connectivity in plant metapopulations and landscape mosaics: does the matrix matter? Oikos 105:3–14

    Google Scholar 

  • Nakagiri N, Tainaka K (2004) Indirect effects of habitat destruction in model ecosystems. Ecol Model 17:103–114

    Google Scholar 

  • Nakagiri N, Tainaka KI, Tao T (2001) Indirect relation between species extinction and habitat destruction. Ecol Model 137:109–118

    Google Scholar 

  • Ostergard H, Ehrlen J (2005) Among population variation in specialist and generalist seed predation, the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111:39–46

    Google Scholar 

  • Paton PWC (1994) The effect of edge on avian nest success—how strong is the evidence. Conserv Biol 8:17–26

    Google Scholar 

  • Peña MA (1994) Siphoninus phillyrae (Haliday, 1835), una nueva mosca blanca para la fauna canaria (Homoptera, Aleyrodidae). Boletín de sanidad vegetal—Plagas 20(3):601–604

    Google Scholar 

  • Prakash S, De Roos AM (2002) Habitat destruction in a simple predator–prey patch model: how predators enhance prey persistence and abundance. Theor Popul Biol 62:231–249

    PubMed  Google Scholar 

  • Priore R (1969) Dealeurodes citri (Ashmead) (Homoptera: Aleyrodidae) in Campania. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri 27:287–316

    Google Scholar 

  • Rand TA, Louda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729

  • Rand TA, Tscharntke T (2007) Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos 116:1353–1362

    Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    PubMed  Google Scholar 

  • Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: from individual behavior to metapopulation level parameters. Am Nat 164:130–153. doi:10.1086/424767

    Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99. doi:10.1086/320863

    CAS  PubMed  Google Scholar 

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol 35:491–522

    Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Google Scholar 

  • Ryal LK, Fahrig L (2006) Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87(5):1086–1093

    Google Scholar 

  • Sabins F (1997) Remote sensing principles and interpretation. W. H. Freeman and Company, New York

    Google Scholar 

  • Searles PS, Agüero Alcarás M, Rousseaux MC (2011) El consumo del agua por el cultivo de olivo (Olea europaea L.) en el noroeste de Argentina: una comparación con la Cuenca Mediterránea. Ecología Austral 21:15–28

    Google Scholar 

  • Sheehan W (1986) Response by Specialist and Generalist Natural Enemies to Agroecosystem Diversification: a Selective Review. Environ Entomol 15(3):456–461

    Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456

    Google Scholar 

  • Swihart RK, Feng Z, Slade NA, Mason DM, Gehring TM (2001) Effects of habitat destruction and resource supplementation in a predator–prey metapopulation model. J Theor Biol 210:287–303

    CAS  PubMed  Google Scholar 

  • Tenenhaus M (1998) La Regression PLS: theorie et pratique. Technip, Paris

    Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25

    Google Scholar 

  • Tscharntke T (2000) Parasitoid populations in agricultural landscapes. In: Hochberg ME, Ives AR (eds) Parasitoid population biolog y. Princeton University Press, Princeton, NJ, pp 235–253

    Google Scholar 

  • Tscharntke T, Brandl R (2004) Plant–insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430. doi:10.1146/annurev.ento.49.061802.123339

    CAS  PubMed  Google Scholar 

  • Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, UK, pp 190–205

    Google Scholar 

  • van Nouhuys S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Ann Zool Fennici 42:433–447

    Google Scholar 

  • van Nouhuys S, Hanski I (2002) Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. J Anim Ecol 71:639–650. doi:10.1046/j.1365-2656.2002.00627.x

    Google Scholar 

  • van Nouhuys S, Hanski I (2005) Metacommunities of butterflies, their host plants and their parasitoids. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, pp 99–121

    Google Scholar 

  • van-Lenteren JC, Noldus LP (1990) Whitefly–plant relationships: behavioural and ecological aspects. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, UK, pp 47–89

    Google Scholar 

  • Venzon M, Janssen A, Sabelis MW (2002) Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97:116–124

    Google Scholar 

  • Viscarret MM, Botto EN (1996) Descripción e identificación de Trialeuroides vaporariorum (westwood) y Bemisia tabaci (Gennadius), (Hemiptera, Homoptera: Aleyroididae). Revista chilena de Entomología 23:51–58

    Google Scholar 

  • Viscarret MM, Botto EN (1997) Presencia de Siphoninus phillyreae (Haliday), “la mosca blanca de los fresnos” (Homptera: Aleyrodidae), en la Argentina. Revista de la Sociedad Entomológica Argentina 56(1–4):90

    Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Google Scholar 

  • Wiens JA (1997) Metapopulation dynamics and landscape ecology. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic, San Diego, California, USA, pp 43–67

    Google Scholar 

  • Wilcove DS, McLellan C, Dobson A (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA, pp 237–256

    Google Scholar 

  • With KA (2004) Metapopulation dynamics: perspectives from landscape ecology. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic, Boston, MA, pp 23–44

    Google Scholar 

  • With KA, Pavuk DM, Worchuck J, Oates RK, Fisher JL (2002) Treshold effects of landscape structure on biological control in agroecosystems. Ecol Appl 12:52–65

    Google Scholar 

  • Wold S, Albano C, Dunn WJ, Edlund U, Eliasson B, Johansson E, Norden B, Sjöström M (1982) The indirect observation of molecular chemical systems. In: Jöreskog KG, Wold H (eds) Systems under indirect observation, vol I and II. North-Holland, Amsterdam, pp 177–207

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano P. Grilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilli, M.P., Pedemonte, M.L., Bruno, M. et al. The effect of landscape structure on two species of different trophic levels in an arid environment. Landscape Ecol 30, 1335–1349 (2015). https://doi.org/10.1007/s10980-015-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0190-8

Keywords

Navigation