Skip to main content
Log in

Tree-species range shifts in a changing climate: detecting, modeling, assisting

  • Landscape Ecology in Review
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In these times of rapidly changing climate, the science of detecting and modeling shifts in the ranges of tree species is advancing of necessity. We briefly review the current state of the science on several fronts. First, we review current and historical evidence for shifting ranges and migration. Next, we review two broad categories of methods, focused on the spatial domain, for modeling potential range shifts and future suitable habitat: empirical species-distribution models and more process-based simulations. We propose long-term demography studies as a complementary approach in the time domain when sufficient data are available. Dispersal and successful migration into newly suitable habitat are key mechanisms constraining range shifts. We review three approaches to estimating these processes, followed by a discussion of the potential for assisted migration. We conclude that there have been significant recent advances on several fronts but there are still large uncertainties that need further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen C, Macaladyb A, Chenchounic H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D, Hoggi E, Gonzalezk P, Fensham R, Zhangm Z, Castron J, Demidavao N, Lim J-H, Allard G, Running S, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Google Scholar 

  • Bachelet D, Lenihan J, Drapek R, Neilson RP (2008) VEMAP vs VINCERA: a DGVM sensitivity to differences in climate scenarios. Glob Planet Change 64:38–48

    Article  Google Scholar 

  • Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci USA 105:4197–4202

    Article  PubMed  CAS  Google Scholar 

  • Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R (2008) Effects of canopy heterogeneity, seed abscission, and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 96:569–580

    Article  Google Scholar 

  • Box G, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Caccianiga M, Payette S (2006) Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). J Biogeogr 33:2120–2135

    Article  Google Scholar 

  • Chen I-C, Hill K, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Chitale VS, Behera MD (2012) Can the distribution of sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in India due to changing climate? Curr Sci 102:1126–1135

    Google Scholar 

  • Clark JS, Lewis M, McLachlan JS, HilleRisLambers J (2003) Estimating population spread: what can we forecast and how well? Ecology 84:1979–1988

    Article  Google Scholar 

  • Clark JS, Bell DM, Hersh MH, Nichols L (2011) Climate change vulnerability of forest biodiversity: climate and resource tracking of demographic rates. Glob Change Biol 17:1834–1849

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  • Davis MB (1989) Lags in vegetation response to greenhouse warming. Clim Change 15:75–82

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  PubMed  CAS  Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. In: Peters RL, Lovejoy TE (eds) Global warming and biological diversity. Yale University Press, New Haven, pp 297–308

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  PubMed  CAS  Google Scholar 

  • Dobrowski SZ, Thorne JH, Greenberg JA, Safford HD, Mynsberge AR, Crimmins SM, Swanson AK (2011) Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecol Monogr 81(2):241–257

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudyk M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scahetti-Pereira R, Schapire RE, Sobero'n J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

  • Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package: seamless integration of dispersal constraints into projections of species distribution models. Ecography 35:872–878

    Article  Google Scholar 

  • Esteve-Selma MA, Martinez-Fernandez J, Hernandez-Garcia I, Montavez J, Lopez-Hernandez JJ, Calvo JF (2012) Potential effects of climatic change on the distribution of Tetraclinis articulata, an endemic tree from arid Mediterranean ecosystems. Clim Change 113:663–678

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodiv Conserv 18:2255–2261

    Article  Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330

    Article  Google Scholar 

  • Franklin J (2012) Back of the envelope: climate change and species distribution modelling. Bull Brit Ecol Soc 43:28–30

    Google Scholar 

  • Franklin J, Syphard AD, He HS, Mladenoff DJ (2005) Altered fire regimes affect landscape patterns of plant succession in the foothills and mountains of southern California. Ecosystems 8:885–898

    Article  Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Article  Google Scholar 

  • Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32:849–862

    Article  Google Scholar 

  • Good P, Jones C, Lowe J, Betts R, Booth B, Huntingford C (2011) Quantifying environmental drivers of future tropical forest extent. J Clim 24:337–1349

    Article  Google Scholar 

  • Gray LK, Gylander T, Mbogga MS, Chen P-Y, Hamann A (2011) Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol Appl 21:1591–1603

    Article  PubMed  Google Scholar 

  • Hanks EM, Hooten MB, Baker FA (2011) Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence. Ecol Appl 21:1173–1188

    Article  PubMed  Google Scholar 

  • He HS, Mladenoff DJ, Crow TR (1999) Linking an ecosystem model and a landscape model to study forest species response to climate warming. Ecol Model 114:213–233

    Article  Google Scholar 

  • Heyder U, Schaphoff S, Gerten D, Lucht W (2011) Risk of severe climate change impact on the terrestrial biosphere. Environ Res Lett 6(3). doi:10.1088/1748-9326/6/3/034036

  • Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP, Thomas CD (2008) Assisted colonization and rapid climate change. Science 321(5887):345–346

    Google Scholar 

  • Holzinger B, Hulber K, Camenisch M, Grabherr G (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196

    Article  Google Scholar 

  • Hsu RCC, Tamis WLM, Raes N, de Snoo GR, Wolf JHD, Oostermeijer G, Lin SH (2012) Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia. Divers Distrib 18(4):334–347

    Google Scholar 

  • Ibanez I, Clark JS, Dietze MC, Felley K, Hersh M, LaDeau S, McBride A, Welch NE, Wolosin MS (2006) Predicting biodiversity change: outside the climate envelope, beyond the species-area curve. Ecology 87:1896–1906

    Google Scholar 

  • Iverson LR, Prasad AM (2001) Potential changes in tree species richness and forest community types following climate change. Ecosystems 4:186–199

    Article  CAS  Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004a) How fast and far might tree species migrate under climate change in the eastern United States? Glob Ecol Biogeogr 13:209–219

    Article  Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004b) Potential colonization of new available tree species habitat under climate change: an analysis for five eastern US species. Landscape Ecol 19:787–799

    Article  Google Scholar 

  • Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manage 254:390–406

    Article  Google Scholar 

  • Iverson L, Prasad AM, Matthews S, Peters M (2011) Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems 14:1005–1020

    Article  Google Scholar 

  • Jiang YY, Zhuang QL, Schaphoff S, Sitch S, Sokolov A, Kicklighter D, Melillo J (2012) Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model. Ecol Evol 2(3):593–614

    Google Scholar 

  • Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Change Biol 17:565–579

    Article  Google Scholar 

  • Kennedy MC, Ford ED (2011) Using multi-criteria analysis of simulation models to understand complex biological systems. BioScience 61:994–1004

    Article  Google Scholar 

  • Kharuk V, Ranson K, Dvinskaya M (2007) Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia. Eurasian J For Res 10–2:163–171

    Google Scholar 

  • Kreyling J, Bittner T, Jaeschke A, Jentsch A, Jonas Steinbauer M, Thiel D, Beierkuhnlein C (2011) Assisted colonization: a question of focal units and recipient localities. Restor Ecol 19(4):433–440

    Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Lafleur B, Paré D, Munson AD, Bergeron Y (2010) Response of northeastern North American forests to climate change: will soil conditions constrain tree species migration? Environ Rev 18:279–289

    Article  Google Scholar 

  • Lawler JJ, Olden JD (2011) Reframing the debate over assisted colonization. Front Ecol Environ 9:569–574

    Article  Google Scholar 

  • Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Glob Change Biol 12:1568–1584

    Article  Google Scholar 

  • Lawson DM, Regan HM, Zedler PH, Franklin J (2012) Cumulative effects of land use, altered fire regime and climate change on persistence of Ceanothus verrucosus, a rare, fire-dependent plant species. Glob Change Biol 18(9):2980

    Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Ann Rev Ecol Evol Syst 34:575–604

    Article  Google Scholar 

  • Lloyd AH, Fastie CL (2003) Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10:176–185

    Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462(7276):1052–1055

    Google Scholar 

  • Lovett GM, Mitchell MJ (2004) Sugar maple and nitrogen cycling in the forests of eastern North America. Front Ecol Environ 2:81–88

    Article  Google Scholar 

  • Luna-Vega I, Alcantara-Ayala O, Contreras-Medina R, Rios-Munoz CA (2012) Ecological niche modeling on the effect of climatic change and conservation of Ternstroemia lineata DC. (Ternstroemiaceae) in Mesoamerica. Botany Botanique 90:637–650

    Article  Google Scholar 

  • Matthews SN, Iverson LR, Prasad AM, Peters MP, Rodewald PG (2011) Modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history factors. For Ecol Manage 262:1460–1472

    Article  Google Scholar 

  • McKenney DW, Pedlar JH, Hutchinson MF, Lawrence K, Campbell K (2007) Potential impacts of climate change on the distribution of North American trees. BioScience 57:939–948

    Article  Google Scholar 

  • McKenney DW, Pedlar JH, Rood RB, Price D (2011) Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Glob Change Biol 17:2720–2730

    Article  Google Scholar 

  • McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

    Article  PubMed  Google Scholar 

  • McLaughlin BC, Zavaleta ES (2012) Predicting species responses to climate change: demography and climate microrefugia in California valley oak (Quercus lobata). Glob Change Biol 18:2301–2312

    Article  Google Scholar 

  • Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Glob Ecol Biogeogr 21:164–178

    Article  Google Scholar 

  • Midgley GF, Davies ID, Albert CH, Altwegg R, Hannah L, Hughes GO, O'Halloran LR, Seo C, Thorne JH, Thuiller W (2010) BioMove—an integrated platform simulating the dynamic response of species to environmental change. Ecography 33:612–616

    Google Scholar 

  • Minteer BA, Collins JP (2010) Move it or lose it? The ecological ethics of relocating species under climate change. Ecol Appl 20:1801–1804

    Article  PubMed  Google Scholar 

  • Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313

    Article  PubMed  Google Scholar 

  • Nabout JC, Oliveira G, Magalhaes MR, Terribile LC, de Almeida FAS (2011) Global climate change and the production of “Pequi” fruits (Caryocar brasiliense) in the Brazilian Cerrado. Natureza Conservacao 9:55–59

    Article  Google Scholar 

  • Nathan R, Katul GG, Bohrer G, Kuparinen A, Soons MB, Thompson SE, Trakhtenbrot A, Horn HS (2011a) Mechanistic models of seed dispersal by wind. Theor Ecol 4(2):113–132

  • Nathan R, Horvitz N, He Y, Kuparinen A, Schurr FM, Katul GG (2011b) Spread of North American wind-dispersed trees in future environments. Ecol Lett 14:211–219

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33(10):1704–1711

    Article  Google Scholar 

  • Pedlar JH, McKenney DW, Aubin I, Beardmore T, Beaulieru J, Iverson LR, O’Neill GA, Winder RS, Ste-Marie C (2012) Placing forestry in the assisted migration debate. BioScience 62:835–842

    Article  Google Scholar 

  • Potter KM, Hargrove WW, Koch FH (2010) Predicting climate change extirpation risk for central and southern Appalachian forest tree species. In: Rentch JS, Schuler TM (eds) Proceedings from the conference on the ecology and management of high-elevation forests in the central and southern Appalachian Mountains, pp. 179–189. Gen Tech Rep NRS-P-64. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, PA

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  • Prasad AM, Gardiner J, Iverson L, Matthews S, Peters M (2013) Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change. Glob Change Biol. doi:10.1111/gcb.12204

    Google Scholar 

  • Ravenscroft C, Scheller RM, Mladenoff DJ, White MA (2010) Forest restoration in a mixed-ownership landscape under climate change. Ecol Appl 20:327–346

    Article  PubMed  Google Scholar 

  • Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–253

    Article  PubMed  Google Scholar 

  • Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camacho A, Root TL, Sala OE, Schneider SH, Ashe DM, Clark JR, Early R, Etterson JR, Fielder ED, Gill JL, Minteer BA, Polasky S, Safford HD, Thompson AR, Vellen M (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721–9724

    Google Scholar 

  • Sato H, Ise T (2012) Effect of plant dynamic processes on African vegetation responses to climate change: analysis using the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM). J Geophys Res. doi:10.1029/2012JG002056

    Google Scholar 

  • Scheiter S, Higgins SI (2009) Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Glob Change Biol 15:2224–2246

    Article  Google Scholar 

  • Schuster WSF, Griffin KL, Roth H, Turnbull MH, Whitehead D, Tissue DT (2008) Changes in composition, structure and aboveground biomass over seventy-six years (1930–2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State. Tree Physiol 28:537–549

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MW (1993) Modelling effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodiv Conser 2:51–61

    Google Scholar 

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156

    Article  Google Scholar 

  • Schwartz M, Iverson LR, Prasad AM (2001) Predicting the potential future distribution of four tree species in Ohio, USA, using current habitat availability and climatic forcing. Ecosystems 4:568–581

    Article  Google Scholar 

  • Schwartz MW, Hellmann JJ, Jason MM, Sax D, Borevitz JO, Brennan J, Camacho AE, Ceballos G, Clark JR, Doremus H, Early R, Etterson JR, Fielder D, Gill JL, Gonzalez P, Green N, Hannah L, Jamieson D, Javeline D, Minteer BA, Odenbaugh J, Polasky S, Richardson DM, Root T, Safford HD (2012) Managed relocation: integrating the scientific, regulatory, and ethical challenges. BioScience 62:732–743

    Google Scholar 

  • Shimazaki M, Tsuyama I, Nakazono E, Nakao K, Konoshima M, Tanaka N, Nakashizuka T (2012) Fine-resolution assessment of potential refugia for a dominant fir species (Abies mariesii) of subalpine coniferous forests after climate change. Plant Ecol 213(4):603–612

    Google Scholar 

  • Swanston C, Janowiak M, Iverson L, Parker L, Mladenoff D, Brandt L, Butler P, St. Pierre M, Prasad AM, Matthews S, Peters M, Higgins D (2011) Ecosystem vulnerability assessment and synthesis: a report from the climate change response framework project in northern Wisconsin. U.S. Department of Agriculture, Forest Service. Northern Research Station, Newtown Square, PA, p 142

  • Tague CL, Band LE (2004) RHESSys: Regional hydro-ecologic simulation system—an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 8:1–42

    Article  Google Scholar 

  • Tague CK, Heyn K, Christensen L (2009) Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystems. Ecohydrology 2:541–554

    Article  CAS  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152

    Google Scholar 

  • Treyger AL, Nowak CA (2011) Changes in tree sapling composition within powerline corridors appear to be consistent with climatic changes in New York State. Glob Change Biol 17:3439–3452

    Article  Google Scholar 

  • van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10:909–916

    Article  PubMed  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the western United States. Science 323:521–524

    Article  PubMed  Google Scholar 

  • Vila-Cabrera A, Martinez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172

    Article  PubMed  Google Scholar 

  • Vitt P, Havens K, Kramer A, Sollenberger D, Yates E (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143:18–27

    Article  Google Scholar 

  • Webb TI (1992) Past changes in vegetation and climate: lessons for the future. In: Peters RL, Lovejoy TE (eds) Global warming and biological diversity. Yale University Press, New Haven, pp 59–75

    Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106:19729–19736

    Article  PubMed  CAS  Google Scholar 

  • Woodall C, Oswalt CM, Westfall JA, Perry CH, Nelson MD, Finley AO (2009) An indicator of tree migration in forests of the eastern United States. For Ecol Manage 257:1434–1444

    Google Scholar 

  • Wu HX, Ying CC, Ju H-B (2005) Predicting site productivity and pest hazard in lodgepole pine using biogeoclimatic system and geographic variables in British Columbia. Annals For Sci 62:31–42

    Article  Google Scholar 

  • Xu CG, Gertner GZ, Scheller RM (2012) Importance of colonization and competition in forest landscape response to global climatic change. Clim Change 110:53–83

    Article  Google Scholar 

  • Yaussy DA, Iverson LR, Matthews SN (2012) Competition and climate affects US hardwood-forest tree mortality. For Sci. doi:10.5849/forsci.11-047

  • Zhu K, Woodall C, Clark J (2011) Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol 18:1042–1052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis R. Iverson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iverson, L.R., McKenzie, D. Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape Ecol 28, 879–889 (2013). https://doi.org/10.1007/s10980-013-9885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9885-x

Keywords

Navigation