Skip to main content

Advertisement

Log in

Experimental landscape ecology

  • Perspective
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Experimentation in landscape ecology is widely conducted using diverse approaches to answer a broad range of questions. By assessing the response to controlled manipulations alternate hypotheses can be clearly refuted, model parameters quantified, and conditions are often ripe for unexpected insights. Results from landscape experiments complement the many well developed observational and modeling approaches more commonly used in landscape ecology. To better understand how landscape experimentation has been conducted and to identify future research directions, we reviewed and organized the diversity of experiments. We identified fifteen distinct landscape experiment types, which we categorized into four broad groups including (I) identifying landscape structure, (II) identifying how ecological processes vary within existing landscapes, (III) identifying how landscape structure influences ecological processes, and (IV) identifying landscape pattern formation factors. Experiment types vary along axes of scalable to real landscapes and generalizability, suitability for analysis through traditional experimental design and flexibility of experimental setup, and complexity of implementation and resource requirements. The next generation of experiments are benefiting from more explicit inclusion of scaling theories and tighter coupling between experiments and cyberinfrastructure. Future experimental opportunities for landscape ecologists include expanded collaborations among experiments, better representations of microbial-soil structure relationships at microscales, and direct evaluations of landscape interactions with global changes. The history, current practice, and future needs of landscape ecological research strongly support an expanded role of experimental approaches that complements the rich observational and modeling strengths of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler PB et al (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753

    Google Scholar 

  • Agrawal AA, Ackerly DD, Adler F, Arnold AE, Caceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152

    Article  Google Scholar 

  • Allen MF, Hipps LE, Wooldridge GL (1989) Wind dispersal and subsequent establishment of VA mycorrhizal fungi across a successional arid landscape. Landscape Ecol 2:165–171

    Article  Google Scholar 

  • Altermatt F, Holyoak M (2012) Spatial clustering of habitat structure effects patterns of community composition and diversity. Ecology 93(5):1125–1133

    Google Scholar 

  • Andersen AN, Braithwaite RW, Cook GD, Corbett LK, Williams RJ, Douglas MM, Gill AM, Setterfield SA, Muller WJ (1998) Fire research for conservation management in tropical savannas: introducing the Kapalga fire experiment. Aust J Ecol 23:95–110

    Google Scholar 

  • Banks JE (1998) The scale of landscape fragmentation affects herbivore response to vegetation heterogeneity. Oecologia 117:239–246

    Article  Google Scholar 

  • Barseghian D, Altintas I, Jones MB, Crawl D, Potter N, Gallagher J, Cornillon P, Schildhauer M, Borer ET, Seabloom EW, Hosseini PR (2010) Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecol Inform 5:42–50

    Article  Google Scholar 

  • Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Castellano MJ, Schmidt JP, Kaye JP, Walker C, Graham CB, Lin H, Dell CJ (2010) Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape. Glob Change Biol 16:2711–2720

    Article  Google Scholar 

  • Chase JM, Bergett AA, Biro EG (2010) Habitat isolation moderates the strength of top-down control in experimental pond food webs. Ecology 91:637–643

    Article  PubMed  Google Scholar 

  • Chatterjee A, Jenerette GD (2011) Spatial variability of soil metabolic rate along a dryland elevation gradient. Landscape Ecol 26:1111–1123

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Collinge SK, Palmer TM (2002) The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands. Landscape Ecol 17:647–656

    Article  Google Scholar 

  • Collins CD, Holt RD, Foster BL (2009) Patch size effects on plant species decline in an experimentally fragmented landscape. Ecology 90:2577–2588

    Article  PubMed  Google Scholar 

  • Cook WM, Yao J, Foster BL, Holt RD, Patrick LB (2005) Secondary succession in an experimentally fragmented landscape: community patterns across space and time. Ecology 86:1267–1279

    Article  Google Scholar 

  • Cumming GS, Olsson P, Chapin FS, Holling CS (2012) Resilience, experimentaion, and scale mismatches in social-ecological landscapes. Landscape Ecol. doi:10.1007/s10980-012-9725-4

  • Damschen EI, Haddad NM, Orrock JL, Tewksbury JJ, Levey DJ (2006) Corridors increase plant species richness at large scales. Science 313:1284–1286

    Article  CAS  PubMed  Google Scholar 

  • Davies KF, Margules CR, Lawrence KF (2000) Which traits of species predict population declines in experimental forest fragments? Ecology 81:1450–1461

    Article  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Desrochers A, Belisle M, Morand-Ferron J, Bourque J (2011) Integrating GIS and homing experiments to study avian movement costs. Landscape Ecol 26:47–58

    Article  Google Scholar 

  • Drake JA, Flum TE, Witteman GJ, Voskuil T, Hoylman AM, Creson C, Kenny DA, Huxel GR, Larue CS, Duncan JR (1993) The construction and assembly of an ecological landscape. J Anim Ecol 62:117–130

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol 18(6):1781–1796

    Article  Google Scholar 

  • Endreny T, Lautz L, Siegel DI (2011) Hyporheic flow path response to hydraulic jumps at river steps: flume and hydrodynamic models. Water Resour Res 47: Wo2517. doi:10.01029/02009wr008631

  • Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, Kapos V, Reynolds G, Sinun W, Snaddon JL, Turner EC (2011) A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos Trans R Soc B 366:3292–3302

    Article  Google Scholar 

  • Fakheran S, Paul-Victor C, Heichinger C, Schmid B, Grossniklaus U, Turnbull LA (2010) Adaptation and extinction in experimentally fragmented landscapes. Proc Nat Acad Sci USA 107:19120–19125

    Article  CAS  PubMed  Google Scholar 

  • Frank DA, Groffman PM (1998) Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79:2229–2241

    Article  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630

    Article  Google Scholar 

  • Gonzalez A, Chaneton EJ (2002) Heterotroph species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem. J Anim Ecol 71:594–602

    Article  Google Scholar 

  • Gray LK, Gylander T, Mbogga MS, Chen PY, Hamann A (2011) Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol Appl 21:1591–1603

    Article  PubMed  Google Scholar 

  • Green JL, Hastings A, Arzberger P, Ayala FJ, Cottingham KL, Cuddington K, Davis F, Dunne JA, Fortin MJ, Gerber L, Neubert M (2005) Complexity in ecology and conservation: mathematical, statistical, and computational challenges. Bioscience 55:501–510

    Article  Google Scholar 

  • Greenwood MJ, McIntosh AR (2008) Flooding impacts on responses of a riparian consumer to cross-ecosystem subsidies. Ecology 89:1489–1496

    Article  PubMed  Google Scholar 

  • Haddad NM, Baum KA (1999) An experimental test of corridor effects on butterfly densities. Ecol Appl 9:623–633

    Article  Google Scholar 

  • Haddad NM, Rosenberg DK, Noon BR (2000) On experimentation and the study of corridors: response to Beier and Noss. Conserv Biol 14:1543–1545

    Article  Google Scholar 

  • Hanley N, Wright RE, Adamowicz V (1998) Using choice experiments to value the environment—design issues, current experience and future prospects. Environ Resource Econ 11:413–428

    Article  Google Scholar 

  • Hargrove WW, Pickering J (1992) Pseudoreplication: a sine-qua-non for regional ecology. Landscape Ecol 6:251–258

    Article  Google Scholar 

  • Hart SC (2006) Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Glob Change Biol 12:1032–1046

    Google Scholar 

  • Hein AM, Gillooly JF (2011) Predators, prey, and transient states in the assembly of spatially structured communities. Ecology 92:549–555

    Article  PubMed  Google Scholar 

  • Hodson J, Fortin D, Belanger L (2010) Fine-scale disturbances shape space-use patterns of a boreal forest herbivore. J Mammal 91:607–619

    Article  Google Scholar 

  • Hoffman AL, Olden JD, Monroe JB, Poff NL, Wellnitz T, Wiens JA (2006) Current velocity and habitat patchiness shape stream herbivore movement. Oikos 115:358–368

    Article  Google Scholar 

  • Holt RD, Robinson GR, Gaines MS (1995) Vegetation dynamics in an experimentally fragmented landscape. Ecology 76:1610–1624

    Article  Google Scholar 

  • Hopp L, Harman C, Desilets SLE, Graham CB, McDonnell JJ, Troch PA (2009) Hillslope hydrology under glass: confronting fundamental questions of soil-water-biota co-evolution at biosphere 2. Hydrol Earth Syst Sci 13:2105–2118

    Article  Google Scholar 

  • Huxman T, Troch P, Chorover J, Breshears DD, Saleska S, Pelletier J, Zeng X (2009) The hills are alive: earth science in a controlled environment. Eos Trans 90:120. doi:10.1029/2009EO140003

    Article  Google Scholar 

  • Ivanov VY, Fatichi S, Jenerette GD, Espeleta JF, Troch PA, Huxman TE (2010) Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour Res 46:W09521. doi:10.1029/2009WR008611

    Article  Google Scholar 

  • Jenerette GD, Chatterjee A (2012) Soil metabolic pulses: water, substrate, and biological regulation. Ecology 93:959–966

    Article  PubMed  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environ 5:365–390

    Article  Google Scholar 

  • Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  • Johnson BL, Haddad NM (2011) Edge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease. Ecology 92:1551–1558

    Article  PubMed  Google Scholar 

  • Kawaguchi Y, Taniguchi Y, Nakano S (2003) Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology 84:701–708

    Article  Google Scholar 

  • Kennedy CM, Marra PP (2010) Matrix mediates avian movements in tropical forested landscapes: inference from experimental translocations. Biol Conserv 143:2136–2145

    Article  Google Scholar 

  • Kleinhans MG, Bierkens MFP, van der Perk M (2010) HESS opinions on the use of laboratory experimentation: hydrologists, bring out shovels and garden hoses and hit the dirt. Hydrol Earth Syst Sci 14:369–382

    Google Scholar 

  • Knowlton JL, Graham CH (2010) Using behavioral landscape ecology to predict species’ responses to land-use and climate change. Biol Conserv 143:1342–1354

    Article  Google Scholar 

  • Konrad CP, Olden JD, Lytle DA, Melis TS, Schmidt JC, Bray EN, Freeman MC, Gido KB, Hemphill NP, Kennard MJ, McMullen LE, Mims MC, Pyron M, Robinson CT, Williams JG (2011) Large-scale flow experiments for managing river systems. Bioscience 61:948–959

    Article  Google Scholar 

  • Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91:944–950

    Article  PubMed  Google Scholar 

  • Larsen L, Harlan SL (2006) Desert dreamscapes: residential landscape preference and behavior. Landscape Urban Plan 78:85–100

    Article  Google Scholar 

  • Larson KL, Casagrande D, Harlan SL, Yabiku ST (2009) Residents’ yard choices and rationales in a desert city: social priorities, ecological impacts, and decision tradeoffs. Environ Manage 44:921–937

    Article  PubMed  Google Scholar 

  • Laurance WF, Camargo JLC, Luizao RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson GB, Benitez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67

    Article  Google Scholar 

  • Lazzaro A, Gauer A, Zeyer J (2011) Field-scale transplantation experiment to investigate structures of soil bacterial communities at pioneering sites. Appl Environ Microbiol 77:8241–8248

    Article  CAS  PubMed  Google Scholar 

  • Legrand D, Guillaume O, Baguette M, Cote J, Trochet A, Calvez O, Zajitschek S, Zajitschek F, Lecomte J, Benard Q, Le Galliard J-F, Clobert J (2012) The Metatron: an experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat Methods 9:828–833

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Han GD, Zhao ML, Chang SX (2010) Spatial vegetation patterns as early signs of desertification: a case study of a desert steppe in inner Mongolia, China. Landscape Ecol 25:1519–1527

    Article  Google Scholar 

  • Maestre FT, Reynolds JF (2007) Amount or pattern? Grassland responses to the heterogeneity and availability of two key resources. Ecology 88:501–511

    Article  PubMed  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • McIntyre NE, Wiens JA (1999) How does habitat patch size affect animal movement? An experiment with darkling beetles. Ecology 80:2261–2270

    Article  Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547

    Article  PubMed  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SEG, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Johnson LT, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–390

    Article  CAS  PubMed  Google Scholar 

  • Nabe-Nielsen J, Sibly RM, Forchhammer MC, Forbes VE, Topping CJ (2010) The effects of landscape modifications on the long-term persistence of animal populations. PLoS One. doi:10.1371/journal.pone.0008932

  • Nachappa P, Margolies DC, Nechols JR, Campbell JF (2011) Variation in predator foraging behaviour changes predator-prey spatio-temporal dynamics. Funct Ecol 25:1309–1317

    Article  Google Scholar 

  • Ness JH, Morin DF (2008) Forest edges and landscape history shape interactions between plants, seed-dispersing ants and seed predators. Biol Conserv 141:838–847

    Article  Google Scholar 

  • Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293

    Article  Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38

    Article  Google Scholar 

  • Orrock JL, Curler GR, Danielson BJ, Coyle DR (2011) Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Landscape Ecol 26:1361–1372

    Article  Google Scholar 

  • Peters DPC, Groffman PM, Nadelhoffer KJ, Grimm NB, Coffins SL, Michener WK, Huston MA (2008) Living in an increasingly connected world: a framework for continental-scale environmental science. Front Ecol Environ 6:229–237

    Article  Google Scholar 

  • Petersen JE, Hastings A (2001) Dimensional approaches to scaling experimental ecosystems: designing mousetraps to catch elephants. Am Naturalist 157:324–333

    Article  CAS  Google Scholar 

  • Petersen JE, Kemp WM, Bartleson R, Boynton WR, Chen CC, Cornwell JC, Gardner RH, Hinkle DC, Houde ED, Malone TC, Mowitt WP, Murray L, Sanford LP, Stevenson JC, Sundberg KL, Suttles SE (2003) Multiscale experiments in coastal ecology: improving realism and advancing theory. Bioscience 53:1181–1197

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML (1995) Landscape ecology: spatial heterogeneity in ecological-systems. Science 269:331–334

    Article  CAS  PubMed  Google Scholar 

  • Pither J, Taylor PD (1998) An experimental assessment of landscape connectivity. Oikos 83:166–174

    Article  Google Scholar 

  • Pringle RM, Doak DF, Brody AK, Jocque R, Palmer TM (2010) Spatial pattern enhances ecosystem functioning in an African savanna. Plos Biol 8: e1000377. doi:10.1371/journal.pbio.1000377

  • Ravi S, D’Odorico P, Wang LX, White CS, Okin GS, Macko SA, Collins SL (2009a) Post-fire resource redistribution in desert grasslands: a possible negative feedback on land degradation. Ecosystems 12:434–444

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Zobeck TM, Over TM (2009b) The effect of fire-induced soil hydrophobicity on wind erosion in a semiarid grassland: experimental observations and theoretical framework. Geomorphology 105:80–86

    Article  Google Scholar 

  • Regan HM, Syphard AD, Franklin J, Swab RM, Markovchick L, Flint AL, Flint LE, Zedler PH (2012) Evaluation of assisted colonization strategies under global change for a rare, fire-dependent plant. Glob Change Biol 18:936–947

    Article  Google Scholar 

  • Renofalt BM, Nilsson C (2008) Landscape scale effects of disturbance on riparian vegetation. Freshwater Biol 53:2244–2255

    Google Scholar 

  • Richardson J, Chatterjee A, Jenerette GD (2012) Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California. Soil Biol Biochem 46:89–95

    Article  CAS  Google Scholar 

  • Romero S, Campbell JF, Nechols JR, With KA (2009) Movement behavior in response to landscape structure: the role of functional grain. Landscape Ecol 24:39–51

    Article  Google Scholar 

  • Rothley KD (2001) Manipulative, multi-standard test of a white-tailed deer habitat suitability model. J Wildl Manage 65:953–963

    Article  Google Scholar 

  • Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schmitz OJ (2005) Scaling from plot experiments to landscapes: studying grasshoppers to inform forest ecosystem management. Oecologia 145:225–234

    Article  PubMed  Google Scholar 

  • Schneider DC (2001) Spatial allometry: theory and application to experimental and natural aquatic ecosystems. In: Gardner RH, Kemp WM, Kennedy VS, Peterson JE (eds) Scaling relations in experimental ecology. Columbia University Press, New York, pp 113–153

    Google Scholar 

  • Schooley RL, Wiens JA (2004) Movements of cactus bugs: patch transfers, matrix resistance, and edge permeability. Landscape Ecol 19:801–810

    Article  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Silva FR, Oliveira TAL, Gibbs JP, Rossa-Feres DC (2012) An experimental assessment of landscape configuration effects on frog and toad abundance and diversity in tropical agro-savannah landscapes of southeastern Brazil. Landscape Ecol 27:87–96

    Article  Google Scholar 

  • Singh A, Fienberg K, Jerolmack DJ, Marr J, Foufoula-Georgiou E (2009) Experimental evidence for statistical scaling and intermittency in sediment transport rates. J Geophys Res Earth Surf 114: F01025. doi:10.1029/2007JF000963

  • Sponseller RA, Fisher SG (2006) Drainage size, stream intermittency, and ecosystem function in a Sonoran desert landscape. Ecosystems 9:344–356

    Article  Google Scholar 

  • Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384

    Article  PubMed  Google Scholar 

  • Tilman D (1989) Ecological experimentation: strengths and conceptual problems. In: Likens G (ed) Long-term studies in ecology: approaches and alternatives. Springer, New York, pp 136–157

    Chapter  Google Scholar 

  • Turlure C, Schtickzelle N, Baguette M (2010) Resource grain scales mobility and adult morphology in butterflies. Landscape Ecol 25:95–108

    Article  Google Scholar 

  • Turner MG (2005) Landscape ecology in North America: past, present, and future. Ecology 86:1967–1974

    Article  Google Scholar 

  • Uriarte M, Anciaes M, da Silva MTB, Rubim P, Johnson E, Bruna EM (2011) Disentangling the drivers of reduced long-distance seed dispersal by birds in an experimentally fragmented landscape. Ecology 92:924–937

    Article  PubMed  Google Scholar 

  • van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Herman PMJ (2008) Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322:739–742

    Article  PubMed  Google Scholar 

  • Variano EA, Ho DT, Engel VC, Schmieder PJ, Reid MC (2009) Flow and mixing dynamics in a patterned wetland: kilometer-scale tracer releases in the Everglades. Water Resour Res 45:W08422. doi:10.1029/2008wr007216

    Article  Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  • Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytol 185:1038–1049

    Article  PubMed  Google Scholar 

  • Weerman EJ, Herman PMJ, Van de Koppel J (2011) Top-down control inhibits spatial self-organization of a patterned landscape. Ecology 92:487–495

    Article  PubMed  Google Scholar 

  • Weldon AJ, Haddad NM (2005) The effects of patch shape on indigo buntings: evidence for an ecological trap. Ecology 86:1422–1431

    Article  Google Scholar 

  • Wiens JA, Schooley RL, Weeks RD (1997) Patchy landscapes and animal movements: do beetles percolate? Oikos 78:257–264

    Article  Google Scholar 

  • With KA, Pavuk DM (2011) Habitat area trumps fragmentation effects on arthropods in an experimental landscape system. Landscape Ecol 26:1035–1048

    Article  Google Scholar 

  • With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80:1340–1353

    Article  Google Scholar 

  • Wu JG, David JL (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Model 153:7–26

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365

    Article  Google Scholar 

Download references

Acknowledgments

We thank the many colleagues and students that have engaged with us in discussions about the role of experimentation in landscape ecology. Ashkaan Fahimipour provided constructive comments to our ideas. GDJ was supported by the US National Science Foundation (DEB-0919006 and CNH-0814692). GDJ was also supported by the Chinese Academy of Sciences Visiting Fellowship Program. WS thanks the financial supports from the National Natural Science Foundation of China (NSFC-31130011 and 31070562) and the Major State Basic Research Development Program (973 Planning Program 2011CB403206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Darrel Jenerette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenerette, G.D., Shen, W. Experimental landscape ecology. Landscape Ecol 27, 1237–1248 (2012). https://doi.org/10.1007/s10980-012-9797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9797-1

Keywords

Navigation