Skip to main content

Advertisement

Log in

Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Globally, forest soils contain twice as much carbon as forest vegetation. Consequently, natural and anthropogenic disturbances affecting carbon accumulation in forest soils can alter regional to global carbon balance. In this study, we evaluate the effects of historic litter raking on soil carbon stocks, a former forest use which used to be widespread throughout Europe for centuries. We estimate, for Switzerland, the carbon sink potential in current forest soils due to recovery from past litter raking (‘legacy effect’). The year 1650 was chosen as starting year for litter raking, with three different end years (1875/1925/1960) implemented for this forest use in the biogeochemical model LPJ-GUESS. The model was run for different agricultural and climatic zones separately. Number of cattle, grain production and the area of wet meadow have an impact on the specific demand for forest litter. The demand was consequently calculated based on historical statistical data on these factors. The results show soil carbon pools to be reduced by an average of 17 % after 310 years of litter raking and legacy effects were still visible 130 years after abandonment of this forest use (2 % average reduction). We estimate the remaining carbon sink potential in Swiss forest due to legacy effects from past litter raking to amount to 158,000 tC. Integrating historical data into biogeochemical models provides insight into the relevance of past land-use practices. Our study underlines the importance of considering potentially long-lasting effects of such land use practices for carbon accounting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberti G, Peressotti A, Piussi P, Zerbi G (2008) Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry 81:1–11

    Article  Google Scholar 

  • Becker-Dillingen J (1927) Handbuch des Getreidebaus. Parey, Berlin

    Google Scholar 

  • Bellassen V, Viovy N, Luyssaert S, Le Marie G, Schelhaas MJ, Ciais P (2011) Reconstruction and attribution of carbon sink of European forests between 1950 and 2000. Glob Chang Biol 17:3274–3293

    Article  Google Scholar 

  • BFS Bundesamst für Statistik (2001) BFS GEOSTAT,Waldmischungsgrad

  • Blaser P, Zimmermann S, Luster J, Walthert L, Lüscher P (2005) Waldböden der Schweiz. Band 2. Regionen Alpen und Alpensüdseite. Hep Verlag, Bern, Switzerland

  • Brändli UB (Ed.) (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eidgenössische Forschungsanstalt WSL, Birmensdorf; Bundesamt für Umwelt, Bern

  • Bürgi M (1999) A case study of forest change in the Swiss lowlands. Landscape Ecol 14:567–575

    Article  Google Scholar 

  • Bürgi M, Gimmi U (2007) Three objectives of historical ecology: the case of litter collecting in Central European forests. Landscape Ecol 22:77–87

    Article  Google Scholar 

  • Chauchard S, Carcailet C, Guibal F (2007) Pattern of land-use abandonment control tree recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948

    Article  Google Scholar 

  • Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze E-D, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429

    Article  CAS  Google Scholar 

  • Dambrine E, Dupouey JL, Laut L, Humbert L, Thinon M, Beaufils T, Richard H (2007) Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 88:1430–1439

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Dzwonko Z, Gawronski S (2002) Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol Conserv 106:389–398

    Article  Google Scholar 

  • Ebermayer E (1876) Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaus. Springer, Berlin

  • Edmonds RL (1987) Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, U.S.A. Can J For Res 17:499–509

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Foley JA (1995) An equilibrium model of the global carbon cycle. Tellus 47B:310–319

    CAS  Google Scholar 

  • Früh J, Schröter C (1904) Die Moore der Schweiz mit Berücksichtigung der gesamten Moorfrage. Francke, Bern

    Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Gimmi U, Bürgi M (2007) Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais) since the late nineteenth century. Environ Hist 13:211–246

    Article  Google Scholar 

  • Gimmi U, Bürgi M, Stuber M (2008) Reconstructing anthropogenic disturbance regimes in forest ecosystems: a case study from the Swiss Rhone Valley. Ecosystems 11:113–124

    Article  Google Scholar 

  • Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Bürgi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann For Sci 67:701

    Article  Google Scholar 

  • Gimmi U, Lachat T, Bürgi M (2011) Reconstructing the collapse of wetland networks in the Swiss lowlands 1850–2000. Landscape Ecol 26:1071–1083

    Article  Google Scholar 

  • Glatzel G (1990) The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128:67–74

    Article  CAS  Google Scholar 

  • Glatzel G (1991) The impact of historic land use and modern forestry on nutrient relations in Central European forest ecosystems. Fertil Res 27:1–8

    Article  Google Scholar 

  • Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kühn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63

    Article  Google Scholar 

  • Högberg MN, Myrold DD, Giesler R, Högberg P (2006) Contrasting patterns of soil N-cycling in model ecosystems of Fennoscandian boreal forests. Oecologia 147:96

    Article  Google Scholar 

  • Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala S, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob Chang Biol 12:1208–1229

    Article  Google Scholar 

  • Hüttl RF, Schaaf W (1995) Nutrient supply of forest soils in relation to management and site history. Plant Soil 168:31–41

    Article  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems: a soil science perspective. Agric Ecosyst Environ 104:399–417

    Article  CAS  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann NE (2012) The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Glob Chang Biol 18:902–914

    Article  Google Scholar 

  • Luyssaert S, Ciais P, Piao SL, Schulze E-D, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, Van der Werf GR, Janssens IA, CARBOEUROPE-IP synthesis team (2010) The European carbon balance. Part 3: forests. Global Chang Biol 16:1429–1450

    Article  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  CAS  Google Scholar 

  • Mather AS, Fairbairn J (2000) From floods to reforestation: the forest transition in Switzerland. Environ Hist 6:399–421

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and the lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD, Linkins AE (1984) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull Mar Sci 35:341–356

    Google Scholar 

  • Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Paravicini E (1928) Die Bodennutzungssysteme der Schweiz in ihrer Verbreitung und Bedingtheit. Justus Perthes, Gotha

    Google Scholar 

  • Perruchoud D, Kienast F, Kaufmann E, Bräker OU (1999) 20th century carbon budget of forest soils in the Alps. Ecosystems 2:320–337

    Article  CAS  Google Scholar 

  • Perruchoud D, Walthert L, Zimmermann S, Lüscher P (2000) Contemporary carbon stocks of mineral forest soils in the Swiss Alps. Biogeochemistry 50:111–136

    Article  Google Scholar 

  • Portner H, Wolf A, Bugmann H (2010) Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes. Biogeosciences 7:3669–3684

    Article  CAS  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–328

    Article  Google Scholar 

  • Ritzmann-Blickensdorfer H (1996) Historische Statistik der Schweiz. Chronos, Zürich

    Google Scholar 

  • Roth L, Bürgi M (2006) Bettlaubsammeln als Streunutzung im St.Galler Rheintal. Schweizerische Zeitschrift für Forstwesen 157:348–356

    Article  Google Scholar 

  • Schüepp M, Gensler G (1980) Klimaregionen der Schweiz. In: Müller G (ed) Beobachtungsnetze der Schweizerischen Meteorologischen Anstalt. Konzept 1980. Arbeitsbericht der Schweizerischen Meteorologischen Zentralanstalt 93. Anhang 1b. Schweizerische Meteorologische Anstalt, Zürich

  • Smith P, Powlson D, Glendining M, Smith J (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Chang Biol 3:67–79

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Article  Google Scholar 

  • Staatsarchiv des Kantons Zürich (1884–1910) Statistische Mittheilungen betreffend den Kanton Zürich, vol 104. University of California

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response of CO2 fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018

    Article  Google Scholar 

  • Thürig E, Palosuo T, Bucher J, Kaufmann E (2005) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For Ecol Manag 210:337–350

    Article  Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC): National Inventory Submissions 2011. (http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/5888.php; Accessed Oct 2011)

  • Weber P, Rigling A, Bugmann H (2008) Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: a modelling study. Ecol Model 210:301–311

    Article  Google Scholar 

  • Yurova AY, Volodin EM, Ågren GI, Chertov OG, Komarov AS (2010) Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections. Glob Chang Biol 16:823–835

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous reviewers for their valuable inputs. We appreciate the development of LPJ-GUESS by Ben Smith and Paul Miller at the Ecosystem Modelling and Biodiversity Studies Group at the Department of Earth and Ecosystem Sciences, Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Gimmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimmi, U., Poulter, B., Wolf, A. et al. Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking. Landscape Ecol 28, 835–846 (2013). https://doi.org/10.1007/s10980-012-9778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9778-4

Keywords

Navigation