Skip to main content

Advertisement

Log in

Modeling invasive species spread in complex landscapes: the case of potato moth in Ecuador

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Tropical mountains have a long history of human occupation, and although vulnerable to biological invasions, have received minimal attention in the literature. Understanding invasive pest dynamics in socio-ecological, agricultural landscapes, like the tropical Andes, is a challenging but timely issue for ecologists as it may provide developing countries with new tools to face increasing threats posed by these organisms. In this work, road rehabilitation into a remote valley of the Ecuadorian Andes constituted a natural experiment to study the spatial propagation of an invasive potato tuber moth into a previously non-infested agricultural landscape. We used a cellular automaton to model moth spatio-temporal dynamics. Integrating real-world variables in the model allowed us to examine the relative influence of environmental versus social landscape heterogeneity on moth propagation. We focused on two types of anthropogenic activities: (1) the presence and spatial distribution of traditional crop storage structures that modify local microclimate, and (2) long-distance dispersal (LDD) of moths by human-induced transportation. Data from participatory monitoring of pest invasion into the valley and from a larger-scale field survey on the Ecuadorian Andes allowed us to validate our model against actual presence/absence records. Our simulations revealed that high density and a clumped distribution of storage structures had a positive effect on moth invasion by modifying the temperature of the landscape, and that passive, LDD enhanced moth invasion. Model validation showed that including human influence produced more precise and realistic simulations. We provide a powerful and widely applicable methodological framework that stresses the crucial importance of integrating the social landscape to develop accurate invasion models of pest dynamics in complex, agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson KL, Deveson TE, Sallam N, Congdon BC (2010) Wind-assisted migration potential of the island sugarcane planthopper Eumetopina flavipes (Hemiptera: Delphacidae): implications for managing incursions across an Australian quarantine frontline. J Appl Ecol 47:1310–1319

    Article  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Google Scholar 

  • Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci USA 99:7280–7287

    Article  PubMed  CAS  Google Scholar 

  • Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: Zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788

    Article  Google Scholar 

  • Briggs CJ, Godfray HCJ (1996) The dynamics of insect-pathogen interactions in seasonal environments. Theor Popul Biol 50:149–177

    Article  PubMed  Google Scholar 

  • Buchan LAJ, Padilla DK (1999) Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecol Appl 9:254–265

    Article  Google Scholar 

  • Buston PM, Elith J (2011) Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J Anim Ecol 80:528–538

    Article  PubMed  Google Scholar 

  • Cacho OJ, Spring D, Hester S, Mac Nally R (2010) Allocating surveillance effort in the management of invasive species: a spatially-explicit model. Environ Model Softw 25:444–454

    Article  Google Scholar 

  • Cadotte M, McMahon S, Fukami T (2006) Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, Dordrecht

    Book  Google Scholar 

  • Cameron PJ, Walker GP, Penny GM, Wigley PJ (2002) Movement of potato tuberworm (Lepidoptera: Gelechiidae) within and between crops, and some comparisons with diamondback moth (Lepidoptera: Plutellidae). Environ Entomol 31:65–75

    Article  Google Scholar 

  • Cameron PJ, Wigley PJ, Elliott S, Madhusudhan VV, Wallace AR, Anderson JAD, Walker GP (2009) Dispersal of potato tuber moth estimated using field application of Bt for mark-capture techniques. Entomol Exp Appl 132:99–109

    Article  Google Scholar 

  • Carrasco LR, Mumford JD, MacLeod A, Harwood T, Grabenweger G, Leach AW, Knight JD, Baker RHA (2010) Unveiling human-assisted dispersal mechanisms in invasive alien insects: integration of spatial stochastic simulation and phenology models. Ecol Model 221:2068–2075

    Article  Google Scholar 

  • Dangles O, Carpio C, Barragan AR, Zeddam JL, Silvain JF (2008) Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. Ecol Appl 18:1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Dangles O, Mesias V, Crespo-Perez V, Silvain JF (2009) Crop damage increases with pest species diversity: evidence from potato tuber moths in the tropical Andes. J Appl Ecol 46:1115–1121

    Article  Google Scholar 

  • Dangles O, Carpio C, Villares M, Yumisaca F, Liger B, Rebaudo F, Silvain JF (2010) Community-based participatory research helps farmers and scientists to manage invasive pests in the Ecuadorian Andes. Ambio 39:325–335

    Article  PubMed  CAS  Google Scholar 

  • Davies KF, Chesson P, Harrison S, Inouye BD, Melbourne BA, Rice KJ (2005) Spatial heterogeneity explains the scale dependence of the native–exotic diversity relationship. Ecology 86:1602–1610

    Article  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold/Hodder Headline Group, London

    Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America—2nd Tansley Lecture. J Ecol 67:401–416

    Article  Google Scholar 

  • EPPO (2005) Data sheets on quarantined pests, Tecia solanivora. Bull OEPP/EPPO 35:399–401

    Google Scholar 

  • Fenemore PG (1988) Host-plant location and selection by adult potato moth, Phthorimaea operculella (Lepidoptera, Gelechiidae)—a review. J Insect Phys 34:175–177

    Article  Google Scholar 

  • Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76:378–382

    Article  Google Scholar 

  • Foley DH (1985) Tethered flight of the potato moth, Phthorimaea operculella. Physiol Entomol 10:45–51

    Article  Google Scholar 

  • Gilbert M, Gregoire JC, Freise JF, Heitland W (2004) Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. J Anim Ecol 73:459–468

    Article  Google Scholar 

  • Goslee SC, Peters DPC, Beck KG (2006) Spatial prediction of invasion success across heterogeneous landscapes using an individual-based model. Biol Invasions 8:193–200

    Article  Google Scholar 

  • Hanafi A (1999) Integrated pest management of potato tuber moth in field and storage. Potato Res 42:373–380

    Article  Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolutions of metapopulations. Elsevier, Amsterdam

    Google Scholar 

  • Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251

    Article  Google Scholar 

  • Harris CM, Park KJ, Atkinson R, Edwards C, Travis JMJ (2009) Invasive species control: incorporating demographic data and seed dispersal into a management model for Rhododendron ponticum. Ecol Inform 4:226–233

    Article  Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Article  Google Scholar 

  • Herben T, Munzbergova Z, Milden M, Ehrlen J, Cousins SAO, Eriksson O (2006) Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. J Ecol 94:131–143

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hufkens K, Ceulemans R, Scheunders P (2008) Estimating the ecotone width in patchy ecotones using a sigmoid wave approach. Ecol Inform 3:97–104

    Google Scholar 

  • Hutchings MJ, John EA, Stewart AJA (eds) (2000) The ecological consequences of environmental heterogeneity. Blackwell, Oxford

    Google Scholar 

  • Jongejans E, Skarpaas O, Shea K (2008) Dispersal, demography and spatial population models for conservation and control management. Perspect Plant Ecol Evol Syst 9:153–170

    Article  Google Scholar 

  • Keasar T, Kalish A, Becher O, Steinberg S (2005) Spatial and temporal dynamics of potato tuberworm (Lepidoptera: Gelechiidae) infestation in field-stored potatoes. J Econ Entomol 98:222–228

    Article  PubMed  Google Scholar 

  • Keller S (2003) Integrated pest management of the potato tuber moth in cropping systems of different agroecological zones. Margraf Publishers, Germany

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Lewis MA, Pacala S (2000) Modeling and analysis of stochastic invasion processes. J Math Biol 41:387–429

    Article  PubMed  CAS  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  PubMed  CAS  Google Scholar 

  • MA (2003) Ecosystems and human well-being: a framework for assessment. Island Press, Washington

    Google Scholar 

  • MAE, EcoCiencia (2005) Proyecto Indicadores de Biodiversidad para Uso Nacional y el Programa de Biodiversidad, Páramos y otros Ecosistemas Frágiles. Project Coordinators: Ángel Onofa (MAE) and Malki Sáenz (EcoCiencia): Quito, Ecuador

  • Manel S, Williams HC, Ormerod S (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94

    Article  PubMed  Google Scholar 

  • Miller TEX (2007) Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants. J Anim Ecol 76:722–729

    Article  PubMed  Google Scholar 

  • Miller TEX, Tenhumberg B (2010) Contributions of demography and dispersal parameters to the spatial spread of a stage-structured insect invasion. Ecol Appl 20:620–633

    Article  PubMed  Google Scholar 

  • Moilanen A (1999) Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology 80:1031–1043

    Article  Google Scholar 

  • Moilanen A (2004) SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecol Model 179:533–550

    Article  Google Scholar 

  • Muirhead JR, Leung B, van Overdijk C, Kelly DW, Nandakumar K, Marchant KR, MacIsaac HJ (2006) Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers Distrib 12:71–79

    Article  Google Scholar 

  • Munkemuller T, Travis JMJ, Burton OJ, Schiffers K, Johst K (2011) Density-regulated population dynamics and conditional dispersal alter the fate of mutations occurring at the front of an expanding population. Heredity 106:678–689

    Article  PubMed  CAS  Google Scholar 

  • Nehrbass N, Winkler E (2007) Is the Giant Hogweed still a threat? An individual-based modelling approach for local invasion dynamics of Heracleum mantegazzianum. Ecol Model 201:377–384

    Article  Google Scholar 

  • Nehrbass N, Winkler E, Mullerova J, Pergl J, Pysek P, Perglova I (2007) A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biol Invasions 9:383–395

    Article  Google Scholar 

  • Nyssen J, Poesen J, Deckers J (2009) Land degradation and soil and water conservation in tropical highlands. Soil Tillage Res 103:197–202

    Article  Google Scholar 

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arevalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486

    Article  Google Scholar 

  • Perry GLW (2004) SpPack: spatial point pattern analysis in Excel using Visual Basic for Applications (VBA). Environ Model Softw 19:559–569

    Article  Google Scholar 

  • Pitt JPW, Worner SP, Suarez AV (2009) Predicting Argentine ant spread over the heterogeneous landscape using a spatially explicit stochastic model. Ecol Appl 19:1176–1186

    Article  PubMed  Google Scholar 

  • Prasad A, Iverson L, Peters M, Bossenbroek J, Matthews S, Davis Sydnor T, Schwartz M (2010) Modeling the invasive emerald ash borer risk of spread using a spatially explicit cellular model. Landscape Ecol 25:353–369

    Article  Google Scholar 

  • Puillandre N, Dupas S, Dangles O, Zeddam JL, Capdevielle-Dulac C, Barbin K, Torres-Leguizamon M, Silvain JF (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Rebaudo F, Crespo-Pérez V, Dangles O (2010) SimPolilla© A cellular automaton to describe a pest invasion within the northern Andes. CIRAD, http://cormasciradfr/en/applica/SimPolillahtm. Accessed 4 Aug 2010

  • Rebaudo F, Crespo-Pérez V, Silvain J-F, Dangles O (2011) Agent-based modeling of human-induced spread of invasive species in agricultural landscapes: insights from the potato moth in Ecuador. JASS 14:7

    Google Scholar 

  • Régnière J, Turgeon JJ (1989) Temperature-dependent development of Zeiraphera canadensis and simulation of its phenology. Entomol Exp Appl 50:185–193

    Article  Google Scholar 

  • Régnière J, Nealis V, Porter K (2009) Climate suitability and management of the gypsy moth invasion into Canada. Biol Invasions 11:135–148

    Article  Google Scholar 

  • Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431

    Article  Google Scholar 

  • Ridgeway G (2010) Package ‘gbm’ version 1.6-3.1. http://cranr-projectorg/web/packages/gbm/gbmpdf. Accessed 2 May 2011

  • Rothschild GHL (ed) (1986) The potato moth—an adaptable pest of short-term cropping systems. Wiley, Canberra

    Google Scholar 

  • Roux O, Baumgartner J (1998) Evaluation of mortality factors and risk analysis for the design of an integrated pest management system. Ecol Model 109:61–75

    Article  Google Scholar 

  • Schreiber SJ, Lloyd-Smith JO (2009) Invasion dynamics in spatially heterogeneous environments. Am Nat 174:490–505

    Article  PubMed  Google Scholar 

  • Sebert-Cuvillier E, Simon-Goyheneche V, Paccaut F, Chabrerie O, Goubet O, Decocq G (2008) Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model. Landscape Ecol 23:787–801

    Article  Google Scholar 

  • Shea K, Jongejans E, Skarpaas O, Kelly D, Sheppard AW (2010) Optimal management strategies to control local population growth or population spread may not be the same. Ecol Appl 20:1148–1161

    Article  PubMed  Google Scholar 

  • Soons MB, Messelink JH, Jongejans E, Heil GW (2005) Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs. J Ecol 93:1214–1225

    Article  Google Scholar 

  • Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Travis JMJ, Smith HS, Ranwala SMW (2010) Towards a mechanistic understanding of dispersal evolution in plants: conservation implications. Divers Distrib 16:690–702

    Article  Google Scholar 

  • Travis JMJ, Harris CM, Park KJ, Bullock JM (2011) Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches. Methods Ecol Evol. doi:10.1111/j.2041-210X.2011.00104.x. Published Online

  • Wu H, Malafant KWJ, Pendridge LK, Sharpe PJH, Walker J (1987) Simulation of two-dimensional point patterns. Application of a lattice framework approach. Ecol Model 38:299–308

    Article  Google Scholar 

  • Yathom S (1968) Phenology of the tuber moth Gnorimoschema operculella Zell. in Israel in spring. Isr J Agric Res 18:89–90

    Google Scholar 

Download references

Acknowledgments

This work was part of the research conducted within the project Innovative Approaches for integrated Pest Management in changing Andes (C09-031) funded by the McKnight Foundation. We are grateful to Jérôme Casas and Isabelle Chuine for their helpful comments on previous versions of the manuscript. We also thank Carlos Carpio and Mario Hererra for their technical support during moth monitoring in the field, and Frederick Saltre for insightful discussions regarding models’ validation. We would also like to thank the editor, Kirk Maloney, and two anonymous reviewers whose constructive suggestions greatly improved the quality of our contribution. VCP was financed by grants from the French Embassy in Ecuador and from the Département Soutien et Formation des communautés scientifiques du Sud (DSF) of the IRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Crespo-Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 499 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo-Pérez, V., Rebaudo, F., Silvain, JF. et al. Modeling invasive species spread in complex landscapes: the case of potato moth in Ecuador. Landscape Ecol 26, 1447–1461 (2011). https://doi.org/10.1007/s10980-011-9649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9649-4

Keywords

Navigation