Skip to main content

Advertisement

Log in

Towards a comprehensive framework for modeling urban spatial dynamics

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The increasing availability of spatial micro data offers new potential for understanding the micro foundations of urban spatial dynamics. However, because urban systems are complex, induction alone is insufficient. Nonlinearities and path dependence imply that qualitatively new dynamics can emerge due to stochastic shocks or threshold effects. Given the policy needs for managing urban growth and decline and the growing desire for sustainable urban forms, models must be able not only to explain empirical regularities, but also characterize system-level dynamics and assess the plausible range of outcomes under alternative scenarios. Towards this end, we discuss a comprehensive modeling approach that is comprised of bottom-up and top-down models in which both inductive and deductive approaches are used to describe and explain urban spatial dynamics. We propose that this comprehensive modeling approach consists of three iterative tasks: (1) identify empirical regularities in the spatial pattern dynamics of key meso and macro variables; (2) explain these regularities with process-based micro models that link individual behavior to the emergence of meso and macro dynamics; and (3) determine the systems dynamical equations that characterize the relationships between micro processes and meso and macro pattern dynamics. Along the way, we also clarify types of complexity (input and output) and discuss dimensions of complexity (spatial, temporal, and behavioral). While no one to date has achieved this kind of comprehensive modeling, meaningful progress has been made in characterizing and explaining urban spatial dynamics. We highlight examples of this work from the recent literature and conclude with a discussion of key challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberti M, Marzluff JM (2004) Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions. Urban Ecosyst 7(3):241–265. doi:10.1023/B:UECO.0000044038.90173.c6

    Article  Google Scholar 

  • Almeida CM, Gleriani JM, Castejon EF, Soares BS (2008) Using neural networks and cellular automata for modeling intra-urban land use dynamics. Int J Geogr Inf Sci 22(9):943–963. doi:10.1080/13658810701731168

    Article  Google Scholar 

  • Anas A, Arnott R, Small K (1998) Urban spatial structure. J Econ Lit 36:1426–1464

    Google Scholar 

  • Anderson PW (1972) More is different. Science 177:393–396. doi:10.1126/science.177.4047.393

    Article  CAS  PubMed  Google Scholar 

  • Anderson PW, Stein D (1984) Broken symmetry, emergent properties, dissipative structures, life and its origin: are they related? Reprinted in Anderson PW (1984) Basic notions of condensed matter physics, Benjamin/Cummings, Menlo Park, CA, pp. 262–285

  • Arthur WB (1988) Urban systems and historical path dependence. In: Ausubel JH, Hermann R (eds) Cities and their vital systems. National Academy Press, Washington, DC, pp 85–97

    Google Scholar 

  • Aspinall R (2004) Modelling land use change with generalized linear models—a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. J Environ Manag 72:91–103. doi:10.1016/j.jenvman.2004.02.009

    Article  Google Scholar 

  • Bak P (1994) Self-organized criticality: an holistic view of nature. In: Cowan GA, Pines D, Meltzer D (eds) Complexity: metapors, models, and reality. Addison-Wesley, Reading, pp 477–496

    Google Scholar 

  • Batty M (1971) Modeling cities as dynamic systems. Nature 231:425–428. doi:10.1038/231425a0

    Article  Google Scholar 

  • Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent-based models and fractals. The MIT Press, Cambridge

    Google Scholar 

  • Batty M (2008) The size, scale and shape of cities. Science 319:769–770. doi:10.1126/science.1151419

    Article  CAS  PubMed  Google Scholar 

  • Batty M, Couclelis H, Eichen M (1997) Urban systems as cellular automata. Environ Plan B 24(2):159–164

    Article  Google Scholar 

  • Baum-Snow N (2007) Did highways cause suburbanization? Q J Econ 122(2):775–805. doi:10.1162/qjec.122.2.775

    Article  Google Scholar 

  • Benenson I, Torrens PM (2004) Geosimulation: object-based modeling of urban phenomena. Comput Environ Urban Syst 28(1–2):1–8

    Article  Google Scholar 

  • Benguigui L, Czamanski D, Marinov M (2001) City growth as a leap-frogging process: an application to the Tel Aviv metropolis. Urban Stud 38:1819–1839. doi:10.1080/00420980120084877

    Article  Google Scholar 

  • Bettencourt LMA, Lobo J, Helbing D, Kühnert C, West GB (2007) Growth, innovation, scaling, and the pace of life in cities. Proc Natl Acad Sci USA 104(17):7301–7306

    Article  CAS  PubMed  Google Scholar 

  • Black D, Henderson V (2003) Urban evolution in the USA. J Econ Geogr 3:343–372

    Article  Google Scholar 

  • Box GE, Norman P, Draper R (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(2):153–174. doi:10.1080/13658810410001713399

    Article  Google Scholar 

  • Brown DG, Robinson DT, An L, Nassauer JI, Zellner M et al (2008) Exurbia from the bottom-up: confronting empirical challenges to characterizing a complex system. Geoforum 39(2):805–818. doi:10.1016/j.geoforum.2007.02.010

    Article  Google Scholar 

  • Carrion-Flóres C, Irwin EG (2009) Identifying spatial interactions in the presence of spatial error autocorrelations: an application to land use spillovers. Energy Resour Econ (forthcoming)

  • Caruso G, Peeters D, Cavailhes J, Rounsevell M (2007) Spatial configurations in a periurban city. A cellular automata-based microeconomic model. Reg Sci Urban Econ 37(5):542–567

    Article  Google Scholar 

  • Clark W (1986) Residential segregation in American cities: a review and interpretation. J Popul Res Policy Rev 5(2):95–127

    Article  Google Scholar 

  • Cohen B (2004) Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts. World Dev 32(1):23–51

    Article  Google Scholar 

  • Couclelis H (1985) Cellular worlds: a framework for modeling micro-macro dynamics. Environ Plan A 17(5):585–596

    Article  Google Scholar 

  • Dobkins LH, Ioannidis YM (2001) Spatial interaction among US cities. Reg Sci Urban Econ 31(6):701–731

    Article  Google Scholar 

  • Epstein JM (2006) Generative social science: studies in agent-based computational modeling. Princeton University Press, Princeton

    Google Scholar 

  • Feldman MP (1999) The new economics of innovation, spillovers and agglomeration: a review of empirical studies. Econ Innov New Tech 8(1&2):5–25

    Article  Google Scholar 

  • Filatova T, Parker D, van der Veen A (2009) Agent-based urban land markets: agent’s pricing behavior, land prices and urban land use change. J Artif Socities Soc Simul 12(1–3). Available online http://jasss.soc.surrey.ac.uk/12/1/3.html

  • Folke C, Carpenter S, Elmqvist T, Gunderson L, Holling CS, Walker B (2002) Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio 31(5):437–440

    PubMed  Google Scholar 

  • Forrester JW (1969) Urban dynamics. MIT Press, Cambridge

    Google Scholar 

  • Fragkias M, Seto KC (2009) Evolving rank-size distributions of intra-metropolitan urban clusters in South China, computers, environment and urban systems http://dx.doi.org/10.1016/j.compenvurbsys.2008.08.005 (in press)

  • Gabaix X (1999) Zipf’s law and the growth of cities. Am Econ Rev 89(2):129–132

    Article  Google Scholar 

  • Grimm N, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. Bioscience 50(7):571–584

    Article  Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750):987–991

    Article  PubMed  CAS  Google Scholar 

  • Hartvigsen G, Kinzig A, Peterson G (1998) Use and analysis of complex adaptive systems in ecosystem science: overview of special section. Ecosystems 1(5):427–430

    Article  Google Scholar 

  • Ioannidis YM, Overman HG (2004) Spatial evolution of the US urban system. J Econ Geogr 4:131–156

    Article  Google Scholar 

  • Irwin EG, Bockstael NE (2007) The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation. Proc Natl Acad Sci USA 104(52):20672–20677

    Article  CAS  PubMed  Google Scholar 

  • Irwin EG, Bell KB, Bockstael NE, Newburn DA, Partridge MD, Wu J (2009) The economics of urban–rural space. Annu Rev Resour Econ (forthcoming)

  • Janssen MA, Ostrom E (2006) Empirically based, agent-based models. Ecol Soc 11(2):37

    Google Scholar 

  • Kevrekidis IG, Gear CW, Hummer G (2004) Equation-free: the computer-aided analysis of complex multiscale systems. Am Inst Chem Eng J 50:1346–1355

    CAS  Google Scholar 

  • Krugman P (1996) The self-organizing economy. Blackwell, Oxford

    Google Scholar 

  • Lambin EF, Geist HJ, Leepers E (2003) Dynamics of land use and land cover change in tropical regions. Annu Rev Environ Resour 28:205–241

    Article  Google Scholar 

  • Lee CL, Huang SL, Chan SL (2008) Biophysical and system approaches for simulating land-use change. Landsc Urban Plan 86:187–203

    Article  Google Scholar 

  • Levin SA (2003) Complex adaptive systems: exploring the known, the unknown and the unknowable. Bull Am Math Soc 40(1):3–19

    Article  Google Scholar 

  • Li X, Yeh AGO (2004) Data mining of cellular automata’s transition rules. Int J Geogr Inf Sci 18(8):723–744

    Article  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Alberti M, Folke C et al (2007) Complexity of coupled human and natural systems. Science 317(5844):1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Lynch L, Liu X (2007) Impact of designated preservation areas on rate of preservation and rate of conversion: preliminary evidence. Am J Agric Econ 89(5):1205–1210

    Article  Google Scholar 

  • Makse HA, Halvin S, Stanley HE (1995) Modelling urban growth patterns. Nature 377:608–612

    Article  CAS  Google Scholar 

  • Manson SM, O’Sullivan D (2006) Complexity theory in the study of space and place. Environ Plan A 38(4):677–692

    Article  Google Scholar 

  • Mansury Y, Gulyas L (2007) The emergence of Zipf’s law in a system of cities: an agent-based simulation approach. J Econ Dyn Control 31:2438–2460

    Article  Google Scholar 

  • Matthews R, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land use models: a review of applications. Landscape Ecol 22:1447–1459

    Article  Google Scholar 

  • Nagendra H, Munroe DK, Southworth J (2004) Introduction to the special issue from pattern to process: landscape fragmentation and the analysis of land use/land cover change. Agric Ecosyst Environ 101(2–3):111–115

    Article  Google Scholar 

  • Nistsch V (2005) Zipf zipped. J Urban Econ 57:86–100

    Article  Google Scholar 

  • O’Sullivan D (2008) Geographical information science: agent-based models. Prog Hum Geogr 32(4):541–550

    Article  Google Scholar 

  • Page SE (1999) On the emergence of cities. J Urban Econ 45(1):184–208

    Article  Google Scholar 

  • Papageorgiou GJ (1980) On sudden urban growth. Environ Plan A 12:1035–1050

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffman MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337

    Article  Google Scholar 

  • Pearson JE (1993) Complex patterns in a simple system. Science 261(5118):189–192

    Article  PubMed  CAS  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM (2005) Biocomplexity in coupled human-natural systems: a multidimensional framework. Ecosystems 8:225–232

    Article  Google Scholar 

  • Platt RV (2004) Global and local analysis of fragmentation in a mountain region of Colorado. Agric Ecosyst Environ 101(2–3):207–218

    Article  Google Scholar 

  • Poon JPH (2005) Quantitative methods: not positively positivist. Prog Hum Geogr 29(6):766–772

    Article  Google Scholar 

  • Reeder RJ, Brown DM (2005) Recreation, tourism, and rural well-being. Economic Research Report Number 7. United States Department of Agriculture, Washington, DC 38 pp

  • Riccaboni M, Pammolli F, Buldyrev SV, Ponta L, Stanley HE (2008) The size variance relationship of business firm growth rates. Proc Natl Acad Sci USA 105(50):19595–19600

    Article  CAS  PubMed  Google Scholar 

  • Robinson DT, Brown DG, Parker DC, Schreinemachers P, Janssen MA, Huigen M, Wittmer H, Gotts N, Promburom P, Irwin EG, Berger T, Gatzweiler F, Barnaud C (2007) Comparison of empirical methods for building agent-based models in land use science. J Land Use Sci 2(1):31–55

    Article  CAS  Google Scholar 

  • Rozenfeld HD, Rybski D, Andrade Jr JS, Batty M, Stanley HE, Makse HA (2008) Laws of population growth. Proc Natl Acad Sci USA 105(48):18702–18707

    Article  CAS  PubMed  Google Scholar 

  • Schelling T (1978) Micromotives and macrobehavior. Norton, New York

    Google Scholar 

  • Seto KC, Fragkias M (2005) Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecol 20(7):871–888

    Article  Google Scholar 

  • Tabuchi T (1998) Urban agglomeration and dispersion: a synthesis of Alonso and Krugman. J Urban Econ 44(3):333–351

    Article  Google Scholar 

  • Torrens PM, Benenson I (2004) Geosimulation: automata-based modeling of urban phenomenon. Wiley, West Sussex

    Google Scholar 

  • Torrens PM, O’Sullivan D (2001) Cellular automata and urban simulation: where do we go from here? Environ Plan B 28:163–168

    Article  Google Scholar 

  • Turner M (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner BLII, Lambin EF, Reenberg A (2007) Land change science special feature: the emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104:20666–20671

    Article  CAS  PubMed  Google Scholar 

  • Verburg P, Veldkamp A (2005) Introduction to the special issue on spatial modeling to explore land use dynamics. Int J Geogr Inf Sci 19(2):99–102

    Article  Google Scholar 

  • Verburg PH, Schot P, Dijst M, Veldkamp A (2004) Land use change modelling: current practice and research priorities. Geojournal 61(4):309–324

    Article  Google Scholar 

  • Weidlich W (2002) Sociodynamics: a systematic approach to mathematical modeling in the social sciences. Taylor and Francis, London

    Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199

    Article  Google Scholar 

  • Wu FL (2002) Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int J Geogr Inf Sci 16(8):795–818

    Article  Google Scholar 

  • Xu C, Liu M, Zhang C, An S, Yu W, Chen JM (2007) The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landscape Ecol 22(6):925–937

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge valuable feedback from Colin Polsky during initial discussions of this paper and stimulating discussions among participants at the 2008 workshop “The design of integrative models of natural and social systems in land change science,” sponsored by the Global Land Project Nodal Office in Aberdeen, Scotland. We thank Eleanor Milne for her careful shepherding of the paper. This paper is based upon work supported by the James S. McDonnell Foundation, the National Science Foundation under DEB-0410336 and Grant No. 0423476, and the US Department of Agriculture Forest Service Northern Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena G. Irwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, E.G., Jayaprakash, C. & Munroe, D.K. Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecol 24, 1223–1236 (2009). https://doi.org/10.1007/s10980-009-9353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-009-9353-9

Keywords

Navigation