Skip to main content
Log in

Contribution of Topographically Based Landslide Hazard Modelling to the Analysis of the Spatial Distribution and Ecology of Kauri (Agathis australis)

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In this paper the use of topographical attributes for the analysis of the spatial distribution and ecological cycle of kauri (Agathis australis), a canopy emergent conifer tree from northern New Zealand, is studied. Several primary and secondary topographical attributes are derived from a Digital Elevation Model (DEM) for a study area in the Waitakere Ranges. The contribution of these variables in explaining presence or absence of mature kauri is assessed with logistic regression and Receiver Operating Characteristic (ROC) plots. A topographically based landslide hazard index, calculated by combining a steady state hydrologic model with the infinite slope stability equation, appears to be very useful in explaining the occurrence and ecological dynamics of kauri. It is shown that the combination of topographical, soil physical and hydrological parameters in the calculation of this single landslide hazard index, performs better in explaining presence of mature kauri than using topographical attributes calculated from the DEM alone. Moreover, this study demonstrates the possibilities of using terrain attributes for representing geomorphological processes and disturbance mechanisms, often indispensable in explaining a species’ ecological cycle. The results of this analysis support the ‘temporal stand replacement model’, involving disturbance as a dominant ecological process in forest regeneration, as an interpretation of the community dynamics of kauri. Furthermore a threshold maturity stage, in which trees become able to stabilize landslide prone sites and postpone a possible disturbance, together with great longevity are seen as major factors making kauri a ‘landscape engineer’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Agresti (2002) Categorical Data Analysis, 2nd ed John Wiley & Sons New York, USA

    Google Scholar 

  • M. Ahmed J. Ogden (1987) ArticleTitlePopulation dynamics of the emergent conifer Agathis australis (D. Don) Lindl. (kauri) in New Zealand. 1. Population structure and tree growth rates in mature stands New Zealand Journal of Botany 25 217–229

    Google Scholar 

  • InstitutionalAuthorNameAuckland Regional Council (2002) Auckland Water Resource Quantity statement 2002, TP 171 ARC, Auckland New Zealand

    Google Scholar 

  • W. Anselin (1988) Spatial Econometrics: Methods and Models Kluwer Boston, USA

    Google Scholar 

  • R.J. Aspinall (2002) ArticleTitleUse of logistic regression for validation of maps of spatial distribution of vegetation species derived from high spatial resolution hyperspectral remotely sensed data Ecological Modelling 157 301–312 Occurrence Handle10.1016/S0304-3800(02)00201-6

    Article  Google Scholar 

  • M.P. Austin (1985) ArticleTitleContinuum conceptordination methods, and niche theory Annual Review of Ecology and Systematics 16 39–61 Occurrence Handle10.1146/annurev.es.16.110185.000351

    Article  Google Scholar 

  • G. del Barrio B. del Alvera J. Puigdefabregas C. Diez (1997) ArticleTitleResponse of high mountain landscape to topographic variables: Central Pyrenees Landscape Ecology 12 95–115

    Google Scholar 

  • K.P. Bell N.E. Bockstael (2000) ArticleTitleApplying the generalized-moments estimation approach to spatial problems involving microlevel data The Review of Economics and Statistics 82 72–82 Occurrence Handle10.1162/003465300558641

    Article  Google Scholar 

  • N.E. Bockstael (1996) ArticleTitleModelling economics and ecology: the importance of a spatial perspective American Journal of Agricultural Economics 78 1168–1180

    Google Scholar 

  • G.B. Bonan H.H. Shugart (1989) ArticleTitleEnvironmental factors and ecological processes in boreal forests Annual Review of Ecology and Systematics 20 1–28 Occurrence Handle10.1146/annurev.es.20.110189.000245

    Article  Google Scholar 

  • D.G. Brown (1994) ArticleTitlePredicting vegetation types at treeline using topography and biophysical disturbance variables Journal of Vegetation Science 5 641–656

    Google Scholar 

  • B.R. Burns J.R. Leathwick (1996) ArticleTitleVegetation–environment relationships at Waipoua ForestNorthlandNew Zealand New Zealand Journal of Botany 34 79–92

    Google Scholar 

  • C. Burrows (1990) Processes of Vegetation Change Unwin Hyman London, UK

    Google Scholar 

  • D.R. Butler S.J. Walsh (1994) ArticleTitleSite characteristics of debris flows and their relationship to alpine treeline Physical Geography 15 181–199

    Google Scholar 

  • Claessens L., Schoorl J.M. and Veldkamp A. 2005. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for Northern New Zealand. Geomorphology, in press.

  • J.S. Clark (1991) ArticleTitleDisturbance and tree life history on the shifting mosaic landscape Ecology 72 1102–1118

    Google Scholar 

  • F.W. Davis S. Goetz (1990) ArticleTitleModeling vegetation pattern using digital terrain data Landscape Ecology 4 69–80

    Google Scholar 

  • K. Denyer M. Cutting G. Campbell C. Green M. Hilton (1993) Waitakere Ecological District – Survey Report for the Protected Natural Areas Programme Auckland Regional Council Auckland New, Zealand 285

    Google Scholar 

  • J. Duan G.E. Grant (2000) Shallow landslide delineation for steep forest watersheds based on topographic attributes and probability analysis J.P. Wilson J.C. Gallant (Eds) Analysis: Principles and Applications John Wiley & Sons New York, USA 311–329

    Google Scholar 

  • R. Dubayah P.M. Rich (1995) ArticleTitleTopographic solar radiation models for GIS International Journal of Geographic Information Systems 9 405–419

    Google Scholar 

  • C.E. Ecroyd (1982) ArticleTitleBiological Flora of New Zealand 8. Agathis australis (D. Don) Lindl. (Araucariaceae) Kauri New Zealand Journal of Botany 24 17–36

    Google Scholar 

  • N.J. Enright J. Ogden (1995) The southern conifers – a synthesis N.J. Enright R.S. Hill (Eds) Ecology of the Southern Conifers Melbourne University Press Melbourne Australia 271–287

    Google Scholar 

  • N.J. Enright J. Ogden L.S. Rigg (1999) ArticleTitleDynamics of forests with Araucariaceae in the western Pacific Journal of Vegetation Science 10 793–804

    Google Scholar 

  • N.J. Enright (2001) ArticleTitleNutrient accessions in a mixed conifer–angiosperm forest in northern New Zealand Austral Ecology 26 618–629

    Google Scholar 

  • InstitutionalAuthorNameEnvironmental Systems Research Institute (ESRI) (1999) ArcView GIS version 3.2 Redlands CAUSA

    Google Scholar 

  • InstitutionalAuthorNameFAO (2001) Lecture notes on the major soils of the world FAO Rome, Italy

    Google Scholar 

  • A.H. Fielding J.F. Bell (1997) ArticleTitleA review of methods for the assessment of prediction errors in conservation presence/absence models Environmental Conservation 24 38–49

    Google Scholar 

  • I.V. Florinsky (1998) ArticleTitleAccuracy of local topographic variables derived from digital elevation models International Journal of Geographical Information Science 12 47–61

    Google Scholar 

  • I.V. Florinsky G.A. Kuryakova (1996) ArticleTitleInfluence of topography on some vegetation cover properties Catena 27 123–141 Occurrence Handle10.1016/0341-8162(96)00005-7

    Article  Google Scholar 

  • J. Franklin (1998) ArticleTitlePredicting the distribution of shrub species in southern California from climate and terrain-derived variables Journal of Vegetation Science 9 733–749

    Google Scholar 

  • R.O. Gardner (1981) ArticleTitleSome species lists of native plants of Auckland region Tane 27 196–174

    Google Scholar 

  • M.R. Guariguata (1990) ArticleTitleLandslide disturbance and forest regeneration in the upper Luquillo mountains of Puerto Rico Journal of Ecology 75 814–832

    Google Scholar 

  • A. Guisan N.E. Zimmerman (2000) ArticleTitlePredictive habitat distribution models in ecology Ecological Modelling 135 147–186 Occurrence Handle10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • B.W. Hayward (1976) ArticleTitleLower Miocene stratigraphy and structure of the Waitakere Ranges, North AucklandNew Zealand and the Waitakere Group (new) New Zealand Journal of Geology and Geophysics 19 871–895

    Google Scholar 

  • B.W. Hayward (1983) Geological Map of New Zealand 1:50 000 Sheet Q11 Waitakere. Map (1 sheet) and notes (28 pp.) New Zealand Department of Scientific and Industrial Research Wellington, New Zealand

    Google Scholar 

  • B. Hörsch (2003) ArticleTitleModelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models Ecological Modelling 168 267–282

    Google Scholar 

  • R. Jessop (1992) The use of meso-scale climate modelling in an examination of the distribution of Kauri University of Auckland New Zealand

    Google Scholar 

  • J.B. Kirkpatrick M. Nunez (1980) ArticleTitleVegetation–radiation relationships in mountainous terrain: eucalypt-dominated vegetation in the Risdon hills, Tasmania Journal of Biogeography 7 197–208

    Google Scholar 

  • M.G. Kramer A.J. Hansen L.M. Taper E.J. Kissinger (2001) ArticleTitleAbiotic controls on long-term windthrow disturbance and temperate rain forest dynamics in southeast Alaska Ecology 82 2749–2768

    Google Scholar 

  • D. Kulakowski T.T. Veblen (2002) ArticleTitleInfluences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest Journal of Ecology 90 806–819 Occurrence Handle10.1046/j.1365-2745.2002.00722.x

    Article  Google Scholar 

  • L. Kumar A.K. Skidmore E. Knowles (1997) ArticleTitleModelling topographic variation in solar radiation in a GIS environment International Journal of Geographical Information Science 11 475–497

    Google Scholar 

  • B.G. Mackey C.I. Mullen K.A. Baldwin J.C. Gallant R.A. Sims D.W. McKenney (2000) Towards a spatial model of boreal forest ecosystems: the role of digital terrain analysis J.P. Wilson J.C. Gallant (Eds) Analysis: Principles and Applications John Wiley & Sons New York, USA 391–422

    Google Scholar 

  • S. Manel J.M. Dias S.J. Ormerod (1999) ArticleTitleComparing discriminant analysis, neural networks and logistic regression for predicting species’ distributions: a case study with a Himalayan river bird Ecological Modelling 120 337–347 Occurrence Handle10.1016/S0304-3800(99)00113-1

    Article  Google Scholar 

  • S. Manel H.C. Williams S.J. Ormerod (2001) ArticleTitleEvaluating presence–absence models in ecology: the need to account for prevalence Journal of Applied Ecology 38 921–931 Occurrence Handle10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  • Menard S. 2001. Applied logistic regression analysis. Sage University Papers Series: Quantitative applications in the social sciences. Paper 07-106. Thousand Oaks, London.

  • C.E. Metz (1978) ArticleTitleBasic principles of ROC analysis Seminars in Nuclear Medicine 8 283–298 Occurrence Handle1:STN:280:CSaB2cfos1M%3D Occurrence Handle112681

    CAS  PubMed  Google Scholar 

  • D.R. Montgomery W.E. Dietrich (1994) ArticleTitleA physically based model for the topographic control on shallow landsliding Water Resources Research 30 1153–1171

    Google Scholar 

  • I.D. Moore R.B. Grayson A.R. Ladson (1991) ArticleTitleDigital terrain modeling: a review of hydrological, geomorphological and biological applications Hydrological Processes 5 3–30

    Google Scholar 

  • I.D. Moore T.W. Norton J.E. Williams (1993a) ArticleTitleModeling environmental heterogeneity in forested landscapes Journal of Hydrology 150 717–747

    Google Scholar 

  • I.D. Moore A.K. Turner J.P. Wilson S.K. Jenson L.E. Band (1993b) GIS and land surface-subsurface modelling M.F. Goodchild B.O. Parks T. Steyaert (Eds) Environmental Modeling with GIS Oxford University Press New York, OxfordUSA 196–230

    Google Scholar 

  • R.W. Myster J.R. Thomlinson M.C. Larsen (1997) ArticleTitlePredicting landslide vegetation in patches on landscape gradients in Puerto Rico Landscape Ecology 12 299–307 Occurrence Handle10.1023/A:1007942804047

    Article  Google Scholar 

  • J. Neter M.H. Kutner C.J. Nachtsheim W. Wasserman (1996) Applied Linear Statistical Models, 4th ed. Irwin Burr Ridge IL, USA

    Google Scholar 

  • J.F. O’Callaghan D.M. Mark (1984) ArticleTitleThe extraction of drainage networks from digital elevation data Computer Vision, Graphics and Image Processing 28 323–344

    Google Scholar 

  • J. Ogden (1985) ArticleTitleAn introduction to plant demography with special reference to New Zealand trees New Zealand Journal of Botany 23 751–772

    Google Scholar 

  • J. Ogden G.H. Stewart (1995) Community dynamics of the New Zealand conifers N.J. Enright R.S. Hill (Eds) Ecology of the southern conifers Melbourne University Press MelbourneAustralia 81–119

    Google Scholar 

  • K.P. Overmars G.H.J. Koning Particlede A. Veldkamp (2003) ArticleTitleSpatial autocorrelation in multi-scale land use models Ecological Modelling 164 257–270 Occurrence Handle10.1016/S0304-3800(03)00070-X

    Article  Google Scholar 

  • R.T. Pack D.G. Tarboton C.N. Goodwin (2001) Assessing Terrain Stability in a GIS using SINMAP Vancouver British Columbia, Canada

    Google Scholar 

  • J. Pearce S. Ferrier (2000) ArticleTitleEvaluating the predictive performance of habitat models developed using logistic regression Ecological Modelling 133 225–245 Occurrence Handle10.1016/S0304-3800(00)00322-7

    Article  Google Scholar 

  • K. Pfeffer E.J. Pebesma P.A. Burrough (2003) ArticleTitleMapping alpine vegetation using vegetation observations and topographic attributes Landscape Ecology 18 759–776 Occurrence Handle10.1023/B:LAND.0000014471.78787.d0

    Article  Google Scholar 

  • J.E. Pinder SuffixIII G.C. Kroh J.D. White A.M. Basham May (1997) ArticleTitleThe relationship between vegetation type and topography in Lassen Volcanic National Park Plant Ecology 131 17–29

    Google Scholar 

  • R.G. Pontius L.C. Schneider (2001) ArticleTitleLand use change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA Agriculture Ecosystems & Environment 85 239–248

    Google Scholar 

  • P. Quinn K.J. Beven P. Chevalier O. Planchon (1991) ArticleTitleThe prediction of hillslope flow paths for distributed hydrological modelling using Digital Terrain Models Hydrological Processes 5 59–79

    Google Scholar 

  • C. Restrepo P. Vitousek P. Neville (2003) ArticleTitleLandslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai’i Plant Ecology 166 131–143 Occurrence Handle10.1023/A:1023225419111

    Article  Google Scholar 

  • J.M. Schoorl M.P.W. Sonneveld A. Veldkamp (2000) ArticleTitleThree-dimensional landscape process modeling: the effect of DEM resolution Earth Surface Processes and Landforms 25 1025–1043 Occurrence Handle10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z

    Article  Google Scholar 

  • M. Segal Y. Mahrer R.A. Pielke Y. Ookouchi (1985) ArticleTitleModeling transpiration patterns of vegetation along south and north facing slopes during the subtropical dry season Agricultural and Forest Metereology 36 19–28

    Google Scholar 

  • S.J. Staal I. Baltenweck M.M. Waithaka T. deWolff L. Njoroge (2002) ArticleTitleLocation and uptake: integrated household and GIS analysis of technology adaptation and landusewith application to smallholder dairy farms in Kenya Agricultural Economics 27 295–315

    Google Scholar 

  • F.J. Swanson T.K. Kratz N. Caine R.G. Woodmansee (1988) ArticleTitleLandform effects on ecosystem patterns and processes Bioscience 38 92–98

    Google Scholar 

  • J.A. Swets (1988) ArticleTitleMeasuring the accuracy of diagnostic systems Science 240 1285–1293 Occurrence Handle1:STN:280:BieB3srptVM%3D Occurrence Handle3287615

    CAS  PubMed  Google Scholar 

  • S.M. Tang J.F. Franklin D.R. Montgomery (1997) ArticleTitleForest harvest patterns and landscape disturbance processes Landscape Ecology 12 349–363 Occurrence Handle10.1023/A:1007929523070

    Article  Google Scholar 

  • U. Tappeiner E. Tasser G. Tappeiner (1998) ArticleTitleModelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area Ecological Modelling 113 225–237

    Google Scholar 

  • M.G. Turner V.H. Dale (1990) Modeling landscape disturbance M.G. Turner R.H. Gardner (Eds) Landscape Ecology Springer-Verlag New York, USA 323–351

    Google Scholar 

  • P.H. Verburg J. Eck Particlevan T.C.M. Nijs Particlede M.J. Dijst P. Schot (2004) ArticleTitleDeterminants of land use change patterns in the Netherlands Environment and Planning B 31 125–150

    Google Scholar 

  • L.R. Walker D.J. Zarin R.W. Myster A.H. Johnson (1996) ArticleTitleEcosystem development and plant succession on landslides in the Caribbean Biotropica 28 566–576

    Google Scholar 

  • P. Wardle (1991) Vegetation of New Zealand Cambridge Press Cambridge, UK

    Google Scholar 

  • P.S. White S.T.A. Pickett (1985) Natural disturbance and patch dynamics: an introduction S.T.A. Pickett P.S. White (Eds) The Ecology of Natural Disturbance and Patch Dynamics Academic Press New York, USA 3–13

    Google Scholar 

  • J.P. Wilson J.C. Gallant (Eds) (2000) Terrain Analysis: Principles and Applications John Wiley & Sons New York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Claessens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claessens, L., Verburg, P.H., Schoorl, J.M. et al. Contribution of Topographically Based Landslide Hazard Modelling to the Analysis of the Spatial Distribution and Ecology of Kauri (Agathis australis). Landscape Ecol 21, 63–76 (2006). https://doi.org/10.1007/s10980-005-5769-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-5769-z

Keywords

Navigation