Skip to main content
Log in

MMP-14 in skeletal muscle repair

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

MMP-14 (also known as MT1-MMP) is a membrane-bound collagenase and member of the Matrix Metalloprotease (MMP) family known to target a broad range of extracellular matrix (ECM) proteins. Remodelling of the ECM is of particular importance following skeletal muscle injury involving myofiber necrosis, when satellite cells are activated to facilitate myogenesis and regeneration. Myogenesis (broadly encompassed by the processes of satellite cell activation, proliferation, migration, differentiation and fusion) requires the myoblast to move either on or through a changing milieu of ECM components. The ECM composition, and especially the degree of fibrosis, influences ability of satellite cells to mediate a successful regenerative program. As a result, MMP activity is central to this regeneration; its activity increases following skeletal muscle injury, while inhibition of MMP reduces regeneration in this tissue. Besides its direct effect on matrix invasion, MMP-14 itself can affect this regeneration via activation of other MMPs (MMP-2, -9 and -13) as well as cytokines, chemokines and growth factors. Indeed recent research suggests that MMP-14 is necessary for the migration of human myoblasts into a collagen I matrix. Here we provide a current review on MMP-14 in the context of its role as a critical mediator of skeletal muscle regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari AS, Chai J, Dunn AR (2011) Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J Am Chem Soc 133:1686–1689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alameddine HS (2012) Matrix metalloproteinases in skeletal muscles: friends or foes? Neurobiol Dis 48:508–518

    Article  CAS  PubMed  Google Scholar 

  • Anilkumar N, Uekita T, Couchman JR, Nagase H, Seiki M, Itoh Y (2005) Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration. FASEB J 19:1326–1328

    CAS  PubMed  Google Scholar 

  • Baoge L, Van Den Steen E, Rimbaut S, Philips N, Witvrouw E, Almqvist KF, Vanderstraeten G, Vanden Bossche LC (2012) Treatment of skeletal muscle injury: a review. ISRN Orthopedics 1–7

  • Barnes BR, Szelenyi ER, Warren GL, Urso ML (2009) Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. Am J Physiol Cell Physiol 297:C1501–C1508

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342

    Article  PubMed Central  PubMed  Google Scholar 

  • Bröhl D, Vasyutina E, Czajkowski MT, Griger J, Rassek C, Rahn HP, Purfürst B, Wende H, Birchmeier C (2012) Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals. Dev Cell 23:469–481

    Article  PubMed  Google Scholar 

  • Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao J, Rehemtulla A, Bahou W, Zucker S (1996) Membrane type matrix metalloproteinase 1 activates pro-gelatinase a without furin cleavage of the N-terminal domain. J Biol Chem 271:30174–30180

    Article  CAS  PubMed  Google Scholar 

  • Carmeli E, Moas M, Reznick AZ, Coleman R (2004) Matrix metalloproteinases and skeletal muscle: a brief review. Muscle Nerve 29:191–197

    Article  CAS  PubMed  Google Scholar 

  • Cavallo-Medved D, Ruby D, Blum G, Bogyo M, Caglic D, Sloane BF (2009) Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res 315:1234–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charge SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Charrin S, Latil M, Soave S, Polesskaya A, Chrétien F, Boucheix C, Rubinstein E (2013) Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun 4:1674

    Article  PubMed  Google Scholar 

  • Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle migration differentiation, regeneration and fibrosis. Cell Adh Migr 3:337–341 Commentary & view

    Article  PubMed Central  PubMed  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  • Colognato H, Winkelmann DA, Yurchenco PD (1999) Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145:619–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornelison DDW, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and Syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94

    Article  CAS  PubMed  Google Scholar 

  • Cornelison DDW, Wlicox-Adelman SA, Goetinick PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenach PA, de Sampaio PC, Murphy G, Roghi C (2012) Membrane type 1 matrix metalloproteinase (MT1-MMP) ubiquitination at Lys581 increases cellular invasion through type I collagen. J Biol Chem 287:11533–11545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 17:5238–5248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fields GB (2010) Synthesis and biological applications of collagen-model triple-helical peptides. Org Biomol Chem 8:1237–1258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushima K, Badlani N, Usas A, Riano F, Fu FH, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29:394–402

    CAS  PubMed  Google Scholar 

  • Galvez BG, Matıas-Roman S, Yanez-Mo M, Vicente-Manzanares M, Sanchez-Madrid F, Arroyo AG (2004) Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell 15:678–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gayraud-Morel B, Chrétien F, Plamant P, Gomès D, Zammit PS, Chabria M, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 312:13–28

    Article  CAS  PubMed  Google Scholar 

  • Goetsch KP, Kallmeyer K, Niesler CU (2011) Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol 30:109–117

    Article  CAS  PubMed  Google Scholar 

  • Goetsch KP, Myburgh KH, Niesler CU (2013) In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair. J Muscle Res Cell Motil 34:333–347

    Article  CAS  PubMed  Google Scholar 

  • Golubkov VS, Chekanov AV, Shiryaev SA, Aleshin AE, Ratnikov BI, Gawlik K, Radichev I, Motamedchaboki K, Smith JW, Strongin AY (2007) Proteolysis of the membrane type-1 matrix metalloproteinase prodomain: implications for a two-step proteolytic processing and activation. J Biol Chem 282:36283–36291

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo P, Guadamillas MC, Hernández-Riquer MV, Pollán A, Grande-García A, Bartolomé RA, Vasanji A, Ambrogio C, Chiarle R, Teixidó J et al (2010) MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Dev Cell 18:77–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grefte S, Vullinghs S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW (2012) Matrigel, but not collagen I, maintains the differentiation capacity of muscle derived cells in vitro. Biomed Mater. doi:10.1088/1748-6041/7/5/055004

    PubMed  Google Scholar 

  • Grounds MD (2008) Complexity of extracellular matrix and skeletal muscle regeneration. In: Schiaffino S, Partridge T (eds) Skeletal muscle repair and regeneration. Springer, The Netherlands, pp 269–301

    Chapter  Google Scholar 

  • Grounds MD (2014) The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 56:56–65

    Article  CAS  PubMed  Google Scholar 

  • Hocking DC, Smith RK, McKeown-Longo PJ (1996) A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. J Cell Biol 133:431–444

    Article  CAS  PubMed  Google Scholar 

  • Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92

    Article  CAS  PubMed  Google Scholar 

  • Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM, Seiki M, Ichikawa K (2012) Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLoS Comput Biol 8:e1002479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huijbregts J, White JD, Grounds MD (2001) The absence of MyoD in regenerating skeletal muscle affects the expression pattern of basement membrane, interstitial matrix and integrin molecules that is consistent with delayed myotube formation. Acta Histochem 103:379–396

    Article  CAS  PubMed  Google Scholar 

  • Islam M, Gor J, Perkins SJ, Ishikawa Y, Bächinger HP, Hohenester E (2013) The concave face of decorin mediates reversible dimerization and collagen binding. J Biol Chem 288:35526–35533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M (2001) Membrane-type 1 matrix metalloproteinase cleaves Cd44 and promotes cell migration. J Cell Biol 153:893–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23:779–796

    CAS  PubMed  Google Scholar 

  • Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  CAS  PubMed  Google Scholar 

  • Lehti K, Valtanen H, Wickström S, Lohi J, Keski-Oja J (2000) Regulation of membrane-type-1 matrix metalloproteinase activity by its cytoplasmic domain. J Biol Chem 275:15006–15013

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-β1 Induces the Differentiation of Myogenic Cells into Fibrotic Cells in injured skeletal muscle. a key event in muscle fibrogenesis. Am J Phathol 164:1007–1019

    Article  CAS  Google Scholar 

  • Lluri G, Jaworski DM (2005) Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve 32:492–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lund DK, Mouly V, Cornelison DDW (2014) MMP-14 is necessary but not sufficient for invasion of three-dimensional collagen by human muscle satellite cells. Am J Physiol Cell Physiol 307:C140–C149

    Article  CAS  PubMed  Google Scholar 

  • Mann C, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano A, Muñoz-Cánoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21–40

    Article  PubMed Central  PubMed  Google Scholar 

  • Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  PubMed  Google Scholar 

  • Maskos K (2005) Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 87:249–263

    Article  CAS  PubMed  Google Scholar 

  • Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet 381:845–860

    Article  CAS  PubMed  Google Scholar 

  • Mimura T, Han KY, Onguch IT, Chang JH, Kim T, Kojima T, Zhou Z, Azar DT (2009) MT1-MMP-mediated cleavage of decorin in corneal angiogenesis. J Vasc Res 46:541–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S, Ideka S-I (2011) Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 20:1787–1799

    Article  CAS  PubMed  Google Scholar 

  • Murphy G, Nagase H (2011) Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J 278:2–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mylona E, Jones KA, Mills ST, Pavlath GK (2006) CD44 regulates myoblast migration and differentiation. J Cell Physiol 209:314–321

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  CAS  PubMed  Google Scholar 

  • Ndinguri MW, Bhowmick M, Tokmina-Toszyk D, Robichaud TK, Fields GB (2012) Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities. Molecules 17:14230–14248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtake Y, Tojo H, Seiki M (2006) Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119:3822–3832

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451

    Article  CAS  PubMed  Google Scholar 

  • Olguin HC, Santander C, Brandan E (2003) Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol 259:209–224

    Article  CAS  PubMed  Google Scholar 

  • Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  • Orgel JPRO, Eid A, Antipova O, Bella J, Scott JE (2009) Decorin core protein (Decoron) shape complements collagen fibril surface structure and mediates its binding. PLoS One 4:e7028

    Article  PubMed Central  PubMed  Google Scholar 

  • Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity. Mol Biotechnol 22:51–86

    Article  CAS  PubMed  Google Scholar 

  • Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  • Philippou A, Maridaki M, Koutsilieris M (2008) The role of urokinase-type plasminogen activator (uPA) and transforming growth factor beta 1 (TGFβ1) in muscle regeneration. In Vivo 22:735–750

    CAS  PubMed  Google Scholar 

  • Piccard H, Van den Steen PE, Opdenakker G (2007) Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol 81:870–892

    Article  CAS  PubMed  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856

    Article  CAS  PubMed  Google Scholar 

  • Remacle AG, Chekanov AV, Golubkov VS, Savinov AY, Rozanov DV, Strongin AY (2006) O-Glycosylation regulates autolysis of cellular membrane type-1 matrix metalloproteinase (MT1-MMP). J Biol Chem 281:16897–16905

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39–54

    Article  PubMed  Google Scholar 

  • Rozanov DV, Deryugina EI, Ratnikov BI, Monosov EZ, Marchenko GN, Quigley JP, Strongin AY (2001) Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP): the role of the cytoplasmic tail Cys574, the active site Glu240, and furin cleabage motifs in oligomerization, processing and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J Biol Chem 276:25705–25714

    Article  CAS  PubMed  Google Scholar 

  • Rullman E, Rundqvist H, Wagsater D, Fischer H, Eriksson P, Sundberg CJ, Jansson E, Gustafsson T (2007) A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol 102:2346–2351

    Article  CAS  PubMed  Google Scholar 

  • Rullman E, Norrbom J, Strömberg A, Wågsäter D, Rundqvist H, Haas T, Gustafsson T (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106:804–812

    Article  CAS  PubMed  Google Scholar 

  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD 2/2 myogenic cells derived from adult skeletal muscle. J Cell Biol 144:631–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Seiki M (2009) Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity. Genes Cells 14:617–626

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278:12601–12604

    Article  CAS  PubMed  Google Scholar 

  • Schuler F, Sorokin LM (1995) Expression of laminin isoforms in mouse myogenic cells in vitro and in vivo. J Cell Sci 108:3795–3805

    CAS  PubMed  Google Scholar 

  • Serrano AL, Muñoz-Cánoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316:3050–3058

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Sottile J (2011) MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. J Cell Sci 124:4039–4050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siegal AL, Atchison K, Fisher KE, Davis GE, Cornelison DDW (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    Article  Google Scholar 

  • Somerville RPT, Oblander SA, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol 4:216

    Article  PubMed Central  PubMed  Google Scholar 

  • Springman EB, Angleton EL, Birkedal-Hansen H, van Wart HE (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation (collagenase/matrix metalloproteinase/chemical modification). Proc Natl Acad Sci USA 87:364–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stark DA, Karvas RM, Siegel AL, Cornelison DDW (2011) Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138:5279–5289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behaviour. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiäinen M, Gstaiger M, Lehti K (2013) EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. J Cell Biol 201:467–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takino T, Miyamori H, Kawaguchi N, Uekita T, Seiki M, Sato H (2003) Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 304:160–166

    Article  CAS  PubMed  Google Scholar 

  • Takino T, Tsuge H, Ozawa T, Sato H (2010) MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix. Biochem Biophys Res Commun 396:1042–1047

    Article  CAS  PubMed  Google Scholar 

  • Tam EM, Moore TR, Butler GS, Overall CM (2004) Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP). J Biol Chem 279:43336–43344

    Article  CAS  PubMed  Google Scholar 

  • Tochowicz A, Goettig P, Evans R, Visse R, Shitomi Y, Palmisano R, Ito N, Richter K, Maskos K, Franke D et al (2011) The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain. Crystal structure and biological functions. J Biol Chem 286:7587–7600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toumi H, Best TM (2003) The inflammatory response: friend or enemy for muscle injury? Br J Sports Med 37:284–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udayakumar TS, Chen ML, Bair EL, von Bredow DC, Cress AE, Nagle RB, Bowden GT (2003) Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 β3 chain and induces cell migration. Cancer Res 63:2292–2299

    CAS  PubMed  Google Scholar 

  • Uekita T, Itoh Y, Yana I, Ohno H, Seiki M (2001) Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol 155:1345–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vachon PH, Loechel F, Xu H, Wewer UM, Engvall E (1996) Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival. J Cell Biol 134:1483–1497

    Article  CAS  PubMed  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Hosino D, Koshikawa N, Seiki M, Suzuki T, Ichikawa K (2013) Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia. Plos One Comput Biol 9:e1003086

    Article  CAS  Google Scholar 

  • Will H, Atkinson SJ, Butler GS, Smith B, Murphy G (1996) The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem 271:17119–17123

    Article  CAS  PubMed  Google Scholar 

  • Wu YI, Munshi HG, Sen R, Snipas SJ, Salvesen GS, Fridman R, Stack MS (2003) Glycosylation broadens the substrate profile of membrane type 1 matrix metalloproteinase. J Biol Chem 279:8278–8289

    Article  PubMed  Google Scholar 

  • Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J, Hu Y, Sampson NS, Zucker S, Cao J (2011) Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem 286:33167–33177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97:4052–4057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R (2010) Matrix metalloproteinases. Curr Med Chem 17:3751–3768

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. U. Niesler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyman, C., Niesler, C.U. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil 36, 215–225 (2015). https://doi.org/10.1007/s10974-015-9414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9414-4

Keywords

Navigation