Skip to main content
Log in

Lessons from calsequestrin-1 ablation in vivo: much more than a Ca2+ buffer after all

  • EMC2011 special issue
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Calsequestrin type-1 (CASQ1), the main sarcoplasmic reticulum (SR) Ca2+ binding protein, plays a dual role in skeletal fibers: a) it provides a large pool of rapidly-releasable Ca2+ during excitation–contraction (EC) coupling; and b) it modulates the activity of ryanodine receptors (RYRs), the SR Ca2+ release channels. We have generated a mouse lacking CASQ1 in order to further characterize the role of CASQ1 in skeletal muscle. Contrary to initial expectations, CASQ1 ablation is compatible with normal motor activity, in spite of moderate muscle atrophy. However, CASQ1 deficiency results in profound remodeling of the EC coupling apparatus: shrinkage of junctional SR lumen; proliferation of SR/transverse-tubule contacts; and increased density of RYRs. While force development during a twitch is preserved, it is nevertheless characterized by a prolonged time course, likely reflecting impaired Ca2+ re-uptake by the SR. Finally, lack of CASQ1 also results in increased rate of SR Ca2+ depletion and inability of muscle to sustain tension during a prolonged tetani. All modifications are more pronounced (or only found) in fast-twitch extensor digitorum longus muscle compared to slow-twitch soleus muscle, likely because the latter expresses higher amounts of calsequestrin type-2 (CASQ2). Surprisingly, male CASQ1-null mice also exhibit a marked increased rate of spontaneous mortality suggestive of a stress-induced phenotype. Consistent with this idea, CASQ1-null mice exhibit an increased susceptibility to undergo a hypermetabolic syndrome characterized by whole body contractures, rhabdomyolysis, hyperthermia and sudden death in response to halothane- and heat-exposure, a phenotype remarkably similar to human malignant hyperthermia and environmental heat-stroke. The latter findings validate the CASQ1 gene as a candidate for linkage analysis in human muscle disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ca2+ :

Calcium ions

CASQ1 and CASQ2:

Skeletal and cardiac isoform of calsequestrin

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

CRUs:

Calcium release units

EC coupling:

Excitation–contraction coupling

EDL:

Extensor digitorum longus

EHS:

Environmental heat-stroke

EM:

Electron microscopy

FDB:

Flexor digitorum brevis

MH:

Malignant hyperthermia

MHC:

Myosin heavy-chain

RYR1:

Ryanodine receptor type-1

SERCA:

Sarco-endoplasmic reticulum Ca2+ ATP-ase

SOCE:

Store-operated Ca2+ entry

SR:

Sarcoplasmic reticulum

TnC:

Troponin-C

T-tubule:

Transverse tubule

WT:

Wild type

References

  • Arai M, Alpert NR, Periasamy M (1991) Cloning and characterization of the gene encoding rabbit cardiac calsequestrin. Gene 109(2):275–279

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34(10):1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Baylor SM, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551(Pt 1):125–138

    Article  PubMed  CAS  Google Scholar 

  • Beard NA, Sakowska MM, Dulhunty AF, Laver DR (2002) Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J 82(1 Pt 1):310–320

    Article  PubMed  CAS  Google Scholar 

  • Beard NA, Casarotto MG, Wei L, Varsanyi M, Laver DR, Dulhunty AF (2005) Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation. Biophys J 88(5):3444–3454

    Article  PubMed  CAS  Google Scholar 

  • Bolanos P, Guillen A, Rojas H, Boncompagni S, Caputo C (2008) The use of CalciumOrange-5N as a specific marker of mitochondrial Ca2+ in mouse skeletal muscle fibers. Pflugers Arch 455(4):721–731

    Article  PubMed  CAS  Google Scholar 

  • Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F (2009a) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20(3):1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Boncompagni S, Rossi AE, Micaroni M, Hamilton SL, Dirksen RT, Franzini-Armstrong C, Protasi F (2009b) Characterization and temporal development of cores in a mouse model of malignant hyperthermia. Proc Natl Acad Sci USA 106(51):21996–22001

    Article  PubMed  CAS  Google Scholar 

  • Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346(25):1978–1988

    Article  PubMed  CAS  Google Scholar 

  • Bourdon L, Canini F (1995) On the nature of the link between malignant hyperthermia and exertional heatstroke. Med Hypotheses 45(3):268–270

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833

    Article  PubMed  CAS  Google Scholar 

  • Burkman JM, Posner KL, Domino KB (2007) Analysis of the clinical variables associated with recrudescence after malignant hyperthermia reactions. Anesthesiology 106(5):901–906

    Article  PubMed  Google Scholar 

  • Campbell KP, MacLennan DH, Jorgensen AO, Mintzer MC (1983) Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. J Biol Chem 258(2):1197–1204

    PubMed  CAS  Google Scholar 

  • Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJ (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci USA 107(51):22326–22331

    Article  PubMed  CAS  Google Scholar 

  • Chelu MG, Goonasekera SA, Durham WJ, Tang W, Lueck JD, Riehl J, Pessah IN, Zhang P, Bhattacharjee MB, Dirksen RT, Hamilton SL (2006) Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J 20(2):329–330

    PubMed  CAS  Google Scholar 

  • Chopra N, Yang T, Asghari P, Moore ED, Huke S, Akin B, Cattolica RA, Perez CF, Hlaing T, Knollmann-Ritschel BE, Jones LR, Pessah IN, Allen PD, Franzini-Armstrong C, Knollmann BC (2009) Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci USA 106(18):7636–7641

    Article  PubMed  CAS  Google Scholar 

  • Dainese M, Quarta M, Lyfenko AD, Paolini C, Canato M, Reggiani C, Dirksen RT, Protasi F (2009) Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 23(6):1710–1720

    Article  PubMed  CAS  Google Scholar 

  • Damiani E, Volpe P, Margreth A (1990) Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J Muscle Res Cell Motil 11(6):522–530

    Article  PubMed  CAS  Google Scholar 

  • Denborough M (1998) Malignant hyperthermia. Lancet 352(9134):1131–1136

    Article  PubMed  CAS  Google Scholar 

  • Dirksen RT (2009) Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 587(Pt 13):3139–3147

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Beard NA, Pouliquin P, Kimura T (2006) Novel regulators of RyR Ca2+ release channels: insight into molecular changes in genetically-linked myopathies. J Muscle Res Cell Motil 27(5–7):351–365

    Article  PubMed  CAS  Google Scholar 

  • Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N, Protasi F, Dirksen R, Hamilton SL (2008) RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133(1):53–65

    Article  PubMed  CAS  Google Scholar 

  • Edwards JN, Murphy RM, Cully TR, von Wegner F, Friedrich O, Launikonis BS (2010) Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle. Cell Calcium 47(5):458–467

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77(3):699–729

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Kenney LJ, Varriano-Marston E (1987) The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J Cell Biol 105(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Pincon-Raymond M, Rieger F (1991) Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol 146(2):364–376

    Article  PubMed  CAS  Google Scholar 

  • Fryer MW, Stephenson DG (1996) Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 493(Pt 2):357–370

    PubMed  CAS  Google Scholar 

  • Fujii J, Willard HF, MacLennan DH (1990) Characterization and localization to human chromosome 1 of human fast-twitch skeletal muscle calsequestrin gene. Somat Cell Mol Genet 16(2):185–189

    Article  PubMed  CAS  Google Scholar 

  • Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253(5018):448–451

    Article  PubMed  CAS  Google Scholar 

  • Gallant EM, Lentz LR (1992) Excitation–contraction coupling in pigs heterozygous for malignant hyperthermia. Am J Physiol 262(2 Pt 1):C422–C426

    PubMed  CAS  Google Scholar 

  • Gilchrist JS, Belcastro AN, Katz S (1992) Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J Biol Chem 267(29):20850–20856

    PubMed  CAS  Google Scholar 

  • Hausfater P (2005) Dantrolene and heatstroke: a good molecule applied in an unsuitable situation. Crit Care 9(1):23–24

    Article  PubMed  Google Scholar 

  • Herzog A, Szegedi C, Jona I, Herberg FW, Varsanyi M (2000) Surface plasmon resonance studies prove the interaction of skeletal muscle sarcoplasmic reticular Ca(2+) release channel/ryanodine receptor with calsequestrin. FEBS Lett 472(1):73–77

    Article  PubMed  CAS  Google Scholar 

  • Hopkins PM, Ellis FR, Halsall PJ (1991) Evidence for related myopathies in exertional heat stroke and malignant hyperthermia. Lancet 338(8781):1491–1492

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto N, Bhatnagar GM, Nagy B, Gergely J (1972) Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism. J Biol Chem 247(23):7835–7837

    PubMed  CAS  Google Scholar 

  • Ikemoto N, Ronjat M, Meszaros LG, Koshita M (1989) Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28(16):6764–6771

    Article  PubMed  CAS  Google Scholar 

  • Inesi G, de Meis L (1989) Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem 264(10):5929–5936

    PubMed  CAS  Google Scholar 

  • Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L, Morad M (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 101(7):1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Kasai M (1994) Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin. Biochem Biophys Res Commun 199(3):1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K, Knollmann BE, Horton KD, Weissman NJ, Holinstat I, Zhang W, Roden DM, Jones LR, Franzini-Armstrong C, Pfeifer K (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 116(9):2510–2520

    PubMed  CAS  Google Scholar 

  • Kobayashi YM, Alseikhan BA, Jones LR (2000) Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein–protein interaction. J Biol Chem 275(23):17639–17646

    Article  PubMed  CAS  Google Scholar 

  • Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, Levy-Nissenbaum E, Khoury A, Lorber A, Goldman B, Lancet D, Eldar M (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69(6):1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Lannergren J, Bruton JD (2003) Mitochondrial Ca2+ in mouse soleus single muscle fibres in response to repeated tetanic contractions. Adv Exp Med Biol 538:557–562

    Article  PubMed  Google Scholar 

  • Launikonis BS, Rios E (2007) Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J Physiol 583(Pt 1):81–97

    Article  PubMed  CAS  Google Scholar 

  • Launikonis BS, Barnes M, Stephenson DG (2003) Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc Natl Acad Sci USA 100(5):2941–2944

    Article  PubMed  CAS  Google Scholar 

  • Lyfenko AD, Goonasekera SA, Dirksen RT (2004) Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease. Biochem Biophys Res Commun 322(4):1256–1266

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH (2000) Ca2+ signalling and muscle disease. Eur J Biochem 267(17):5291–5297

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Phillips MS (1992) Malignant hyperthermia. Science 256(5058):789–794

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Wong PT (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68(6):1231–1235

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Campbell KP, Reithmeier RAF (1983) Calsequestrin. In: Calcium and cell function, vol IV. Academic, New York, pp 152–173

  • MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, Korneluk RG, Frodis W, Britt BA, Worton RG (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343(6258):559–561

    Article  PubMed  CAS  Google Scholar 

  • Meissner G (1975) Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim Biophys Acta 389(1):51–68

    Article  PubMed  CAS  Google Scholar 

  • Migita T, Mukaida K, Kawamoto M, Kobayashi M, Nishino I, Yuget O (2007) Propofol-induced changes in myoplasmic calcium concentrations in cultured human skeletal muscles from RYR1 mutation carriers. Anaesth Intensive Care 35(6):894–898

    PubMed  CAS  Google Scholar 

  • Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587(Pt 2):443–460

    Article  PubMed  CAS  Google Scholar 

  • Murray BE, Ohlendieck K (1998) Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle. FEBS Lett 429(3):317–322

    Article  PubMed  CAS  Google Scholar 

  • Ohkura M, Ide T, Furukawa K, Kawasaki T, Kasai M, Ohizumi Y (1995) Calsequestrin is essential for the Ca2+ release induced by myotoxin alpha in skeletal muscle sarcoplasmic reticulum. Can J Physiol Pharmacol 73(8):1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Ording H, Hald A, Sjontoft E (1985) Malignant hyperthermia triggered by heating in anaesthetized pigs. Acta Anaesthesiol Scand 29(7):698–701

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4(5):379–383

    Article  PubMed  CAS  Google Scholar 

  • Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, Volpe P, Allen PD, Reggiani C, Protasi F (2007) Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J Physiol 583(Pt 2):767–784

    Article  PubMed  CAS  Google Scholar 

  • Paolini C, Quarta M, D’Onofrio L, Reggiani C, Protasi F (2011a) Differential effect of calsequestrin ablation on structure and function of fast and slow skeletal muscle fibers. J Biomed Biotech. doi:2011:634075. Epub 2011 Sep 14

  • Paolini C, Quarta M, Tomasi M, La Rovere R, Fulle S, Nori A, Reggiani C, Protasi F (2011b) Pathological oxidative stress causes mitochondrial damage and a progressive core-like myophathy in mice lacking calsequestrin-1. Acta Physiologica 203(688):A43

    Google Scholar 

  • Park H, Park IY, Kim E, Youn B, Fields K, Dunker AK, Kang C (2004) Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem 279(17):18026–18033

    Article  PubMed  CAS  Google Scholar 

  • Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103(2):196–200

    PubMed  CAS  Google Scholar 

  • Protasi F, Paolini C, Dainese M (2009) Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J Physiol 587(Pt 13):3095–3100

    Article  PubMed  CAS  Google Scholar 

  • Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, Doriguzzi C, Fagerlund TH, Berg K, Ording H et al (1993) Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet 5(1):51–55

    Article  PubMed  CAS  Google Scholar 

  • Racay P, Gregory P, Schwaller B (2006) Parvalbumin deficiency in fast-twitch muscles leads to increased ‘slow-twitch type’ mitochondria, but does not affect the expression of fiber specific proteins. FEBS J 273(1):96–108

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Ma JJ, Gonzalez A (1991) The mechanical hypothesis of excitation–contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil 12(2):127–135

    Article  PubMed  CAS  Google Scholar 

  • Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins P (2006) Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat 27(10):977–989

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg H, Davis M, James D, Pollock N, Stowell K (2007) Malignant hyperthermia. Orphanet J Rare Dis 2:21

    Article  PubMed  Google Scholar 

  • Rossi AE, Boncompagni S, Dirksen RT (2009) Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle. Exerc Sport Sci Rev 37(1):29–35

    Article  PubMed  Google Scholar 

  • Rossi AE, Boncompagni S, Wei L, Protasi F, Dirksen RT (2011) Differential impact of mitochondrial positioning on mitochondrial Ca2+ uptake and Ca2+ spark suppression in skeletal muscle. Am J Physiol Cell Physiol. doi:ajpcell.00194.2011

  • Royer L, Sztretye M, Manno C, Pouvreau S, Zhou J, Knollmann BC, Protasi F, Allen PD, Rios E (2010) Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. J Gen Physiol 136(3):325–338

    Article  PubMed  CAS  Google Scholar 

  • Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166(4):527–536

    Article  PubMed  CAS  Google Scholar 

  • Sacchetto R, Volpe P, Damiani E, Margreth A (1993) Postnatal development of rabbit fast-twitch skeletal muscle: accumulation, isoform transition and fibre distribution of calsequestrin. J Muscle Res Cell Motil 14(6):646–653

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Seiler S, Chu A, Fleischer S (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99(3):875–885

    Article  PubMed  CAS  Google Scholar 

  • Schneider MF (1994) Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol 56:463–484

    Article  PubMed  CAS  Google Scholar 

  • Scott BT, Simmerman HK, Collins JH, Nadal-Ginard B, Jones LR (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263(18):8958–8964

    PubMed  CAS  Google Scholar 

  • Sembrowich WL, Quintinskie JJ, Li G (1985) Calcium uptake in mitochondria from different skeletal muscle types. J Appl Physiol 59(1):137–141

    PubMed  CAS  Google Scholar 

  • Shin DW, Ma J, Kim DH (2000) The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca2+ and interacts with triadin. FEBS Lett 486:178–182

    Article  PubMed  CAS  Google Scholar 

  • Shin DW, Pan Z, Kim EK, Lee JM, Bhat MB, Parness J, Kim DH, Ma J (2003) A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle. J Biol Chem 278(5):3286–3292

    Article  PubMed  CAS  Google Scholar 

  • Sidman RD, Gallagher EJ (1995) Exertional heat stroke in a young woman: gender differences in response to thermal stress. Acad Emerg Med 2(4):315–319

    Article  PubMed  CAS  Google Scholar 

  • Strazis KP, Fox AW (1993) Malignant hyperthermia: a review of published cases. Anesth Analg 77(2):297–304

    PubMed  CAS  Google Scholar 

  • Szegedi C, Sarkozi S, Herzog A, Jona I, Varsanyi M (1999) Calsequestrin: more than ‘only’ a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem J 337(Pt 1):19–22

    Article  PubMed  CAS  Google Scholar 

  • Takekura H, Kasuga N (1999) Differential response of the membrane systems involved in excitation–contraction coupling to early and later postnatal denervation in rat skeletal muscle. J Muscle Res Cell Motil 20(3):279–289

    Article  PubMed  CAS  Google Scholar 

  • Takekura H, Shuman H, Franzini-Armstrong C (1993) Differentiation of membrane systems during development of slow and fast skeletal muscle fibres in chicken. J Muscle Res Cell Motil 14(6):633–645

    Article  PubMed  CAS  Google Scholar 

  • Takekura H, Fujinami N, Nishizawa T, Ogasawara H, Kasuga N (2001) Eccentric exercise-induced morphological changes in the membrane systems involved in excitation–contraction coupling in rat skeletal muscle. J Physiol 533(Pt 2):571–583

    Article  PubMed  CAS  Google Scholar 

  • Terentyev D, Nori A, Santoro M, Viatchenko-Karpinski S, Kubalova Z, Gyorke I, Terentyeva R, Vedamoorthyrao S, Blom NA, Valle G, Napolitano C, Williams SC, Volpe P, Priori SG, Gyorke S (2006) Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res 98(9):1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Tijskens P, Jones LR, Franzini-Armstrong C (2003) Junctin and calsequestrin overexpression in cardiac muscle: the role of junctin and the synthetic and delivery pathways for the two proteins. J Mol Cell Cardiol 35(8):961–974

    Article  PubMed  CAS  Google Scholar 

  • Tomasi M, Canato M, Paolini C, Dainese M, Reggiani C, Volpe P, Protasi F, Nori A (2011) Calsequestrin 1 (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice. Am J Physiol Cell Physiol. doi:C-00119-2011R2

  • Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292

    Article  PubMed  CAS  Google Scholar 

  • Wedel DJ, Quinlan JG, Iaizzo PA (1995) Clinical effects of intravenously administered dantrolene. Mayo Clin Proc 70(3):241–246

    PubMed  CAS  Google Scholar 

  • Wei L, Varsanyi M, Dulhunty AF, Beard NA (2006) The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors. Biophys J 91(4):1288–1301

    Article  PubMed  CAS  Google Scholar 

  • Wei AC, Liu T, Cortassa S, Winslow RL, O’Rourke B (2011) Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim Biophys Acta 1813(7):1373–1381

    Article  PubMed  CAS  Google Scholar 

  • Wyndham CH (1977) Heat stroke and hyperthermia in marathon runners. Ann N Y Acad Sci 301:128–138

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Riehl J, Esteve E, Matthaei KI, Goth S, Allen PD, Pessah IN, Lopez JR (2006) Pharmacologic and functional characterization of malignant hyperthermia in the R163C RyR1 knock-in mouse. Anesthesiology 105(6):1164–1175

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Zarain-Herzberg A (1994) Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol Cell Biochem 135(1):61–70

    Article  PubMed  CAS  Google Scholar 

  • Zarain-Herzberg A, Fliegel L, MacLennan DH (1988) Structure of the rabbit fast-twitch skeletal muscle calsequestrin gene. J Biol Chem 263(10):4807–4812

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, Britt BA, Browell AK, MacLennan DH (1993) A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 5(1):46–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272(37):23389–23397

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Franzini-Armstrong C, Ramesh V, Jones LR (2001) Structural alterations in cardiac calcium release units resulting from overexpression of junctin. J Mol Cell Cardiol 33(2):233–247

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Weisleder N, Han X, Pan Z, Parness J, Brotto M, Ma J (2006) Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 281(44):33477–33486

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Min CK, Ko JK, Parness J, Kim do H, Weisleder N, Ma J (2010) Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin-1 expression. Biophys J 99(5):1556–1564

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Grant # GGP08153 from the Italian Telethon ONLUS Foundation to FP and CR. We also thank Drs. P.D. Allen, P. Volpe, A. Nori, and R.T. Dirksen for the collaboration provided in generating mice and in crucial experiments (see Paolini et al. 2007; Dainese et al. 2009; Paolini et al. 2011b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feliciano Protasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protasi, F., Paolini, C., Canato, M. et al. Lessons from calsequestrin-1 ablation in vivo: much more than a Ca2+ buffer after all. J Muscle Res Cell Motil 32, 257–270 (2011). https://doi.org/10.1007/s10974-011-9277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9277-2

Keywords

Navigation