Skip to main content
Log in

Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The regulation of muscle fibre transitions has mainly been studied in vivo using conventional histological or immunohistochemical techniques. In order to investigate the molecular regulation of myosin heavy chain (MyHC) isoform expression in cell culture studies, we first characterised the normal transitions in endogenous expression of the MyHC isoforms and the myogenic regulatory factors during differentiation of C2C12 muscle cells. Interestingly, across the time course of differentiation, MyHC mRNA isoforms were expressed in a distinct temporal pattern as two distinct cohorts, one including MyHC I, embryonic and neonatal, the other including MyHC IIa, IIx and IIb. The pattern of expression suggests a transition in MyHC isoforms, from one cohort to another, occurs during muscle cell differentiation and that these transitions occur independent of nerve innervation. To our knowledge, this is the most comprehensive analysis of in vitro MyHC mRNA isoform transitions and provides important information for studying the regulation of transitions in MyHC isoforms in cell culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agbulut O, Noirez P, Beaumont F, Butler-Browne G (2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95:399–406

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Sartorius CA, Sycuro LK, Leinwand LA (2001) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276(47):43524–43533

    Article  PubMed  CAS  Google Scholar 

  • Alway SE, Degens H, Lowe DA, Krishnamurthy G (2002) Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats. Am J Physiol Regul Integr Comp Physiol 282:411–422

    Google Scholar 

  • Cerny LC, Bandman E (1986) Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J Cell Biol 103(6):2153–2161

    Article  PubMed  CAS  Google Scholar 

  • D’Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R et al (2006) Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 570(Pt 3):611–627

    PubMed  Google Scholar 

  • Delbono O (2010) Myosin—still a good reference for skeletal muscle fibre classification? J Physiol 588(Pt 1):9

    Article  PubMed  CAS  Google Scholar 

  • Ekmark M, Rana ZA, Stewart G, Hardie DG, Gundersen K (2007) De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. J Physiol 584(Pt 2):637–650

    Article  PubMed  CAS  Google Scholar 

  • Fahey AJ, Brameld JM, Parr T, Buttery PJ (2005) Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus. J Anim Sci 83:2330–2338

    PubMed  CAS  Google Scholar 

  • Gayraud-Morel B, Chrétien F, Flamant P, Gomès D, Zammit PS, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 312:13–28

    Article  PubMed  CAS  Google Scholar 

  • Giger J, Qin AX, Bodell PW, Baldwin KM, Haddad F (2007) Activity of the β-myosin heavy chain antisense promoter responds to diabetes and hypothyroidism. Am J Physiol Heart Circ Physiol 292:3065–3071

    Article  Google Scholar 

  • Gunawan AM, Richert BT, Schinckel AP, Grant AL, Gerrard DE (2007) Ractopamine induces differential gene expression in porcine skeletal muscles. J Anim Sci 85:2115–2124

    Article  PubMed  CAS  Google Scholar 

  • Harrison BC, Allen DL, Leinwand LA (2011) IIb or not IIb? Regulation of myosin heavy chain gene expression in mice and men. Skelet Muscle 1(5):1–9

    Google Scholar 

  • Hasty P, Bradley A, Morris JH, Edmondson DH, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506

    Article  PubMed  CAS  Google Scholar 

  • Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and Myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118:1137–1147

    PubMed  CAS  Google Scholar 

  • Hurley MS, Flux C, Salter AM, Brameld JM (2006) Effects of fatty acids on skeletal muscle differentiation in vitro. Br J Nutr 95:623–630

    Article  PubMed  CAS  Google Scholar 

  • Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJC, Fernandez A (1998) The muscle regulatory factors MyoD and Myf-5 undergo distinct cell cycle—specific expression in muscle cells. J Cell Biol 142(6):1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur L (2010) A second look into fibre typing—relation to meat quality. Meat Sci 84:257–270

    Article  PubMed  CAS  Google Scholar 

  • Luther HP, Haase H, Hohaus A, Beckmann G, Reich J, Morano I (1998) Characterization of naturally occurring myosin heavy chain antisense mRNA in rat heart. J Cell Biochem 70:110–120

    Article  PubMed  CAS  Google Scholar 

  • Matsakas A, Mouisel E, Amthor H, Patel K (2010) Myostatin knockout mice increase oxidative muscle phenotype as an adaptive response to exercise. J Muscle Res Cell Motil 31:111–125

    Article  PubMed  CAS  Google Scholar 

  • Miller JB (1990) Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, myoD1, and myogenin. J Cell Biol 111:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima YI (1993) Myogenin gene disruption results in perinatal lethality because of sever muscle defect. Nature 364:532–535

    Article  PubMed  CAS  Google Scholar 

  • Pandorf CE, Haddad F, Roy RR, Qin AX, Edgerton VR, Baldwin KM (2006) Dynamics of myosin heavy chain gene regulation in slow skeletal muscle—role of natural antisense RNA. J Biol Chem 281(50):38330–38342

    Article  PubMed  CAS  Google Scholar 

  • Rhinn H, Scherman D, Escrio V (2008) One-step quantification of single-stranded DNA in the presence of RNA using Oligreen in a real-time polymerase chain reaction thermocycler. Anal Biochem 372:116–118

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi C, Haddad F, Bodell PW, Qin AX, Jiang W, Baldwin KM (2008) Intergenic bidirectional promoter and cooperative regulation of the IIx and IIb MHC genes in fast skeletal muscle. Am J Physiol Regul Integr Comp Physiol 295:208–218

    Article  Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  PubMed  CAS  Google Scholar 

  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD/− myogenic cells derived from adult skeletal muscle. J Cell Biol 144(4):631–643

    Article  PubMed  CAS  Google Scholar 

  • Silberstein L, Webster SG, Travis M, Blau HM (1986) Developmental progression of myosin gene expression in cultured muscle cells. Cell 46(7):1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Ustanina S, Carvajal J, Rigby P, Braun T (2007) The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 25:2006–2016

    Article  PubMed  CAS  Google Scholar 

  • Voytik SL, Przyborski M, Badylak SF, Konieczny SF (1993) Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn 198:214–224

    Article  PubMed  CAS  Google Scholar 

  • Weydert A, Barton P, Harris JA, Pinset C, Buckingham M (1987) Development pattern of mouse myosin heavy chain gene transcripts in vivo and in vitro. Cell 49:121–129

    Article  PubMed  CAS  Google Scholar 

  • Wheeler MT, Snyder EC, Patterson MN, Swoap SJ (1999) An E-box within the MHC IIB gene is bound by MyoD and is required for gene expression in fast muscle. Am J Physiol 276:1069–1078

    Google Scholar 

  • Wimmers K, Ngu NT, Jennen DGJ, Tesfaye D, Murani E, Schellander K, Ponsuksili S (2008) Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. J Anim Sci 86:795–803

    Article  PubMed  CAS  Google Scholar 

  • Wright WE, Sassoon DA, Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to myoD. Cell 56:607–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Biotechnology and Biological Sciences Research Council (BBSRC) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Brown.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.M., Parr, T. & Brameld, J.M. Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. J Muscle Res Cell Motil 32, 383–390 (2012). https://doi.org/10.1007/s10974-011-9267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9267-4

Keywords

Navigation