Skip to main content
Log in

The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Palladin is an actin associated protein serving as a cytoskeleton scaffold, and actin cross linker, localizing at stress fibers, focal adhesions, and other actin based structures. Recent studies showed that palladin plays a critical role in smooth muscle differentiation, migration, contraction, and more importantly contributes to embryonic development. This review will focus on the functions and possible mechanisms of palladin in smooth muscle and in pathological conditions such as cardiovascular diseases and cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153:413–427

    Article  PubMed  CAS  Google Scholar 

  • Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95:403–413

    Article  PubMed  CAS  Google Scholar 

  • Boukhelifa M, Parast MM, Valtschanoff JG, LaMantia AS, Meeker RB, Otey CA (2001) A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Mol Biol Cell 12:2721–2729

    PubMed  CAS  Google Scholar 

  • Boukhelifa M, Hwang SJ, Valtschanoff JG, Meeker RB, Rustioni A, Otey CA (2003) A critical role for palladin in astrocyte morphology and response to injury. Mol Cell Neurosci 23:661–668

    Article  PubMed  CAS  Google Scholar 

  • Boukhelifa M, Parast MM, Bear JE, Gertler FB, Otey CA (2004) Palladin is a novel binding partner for Ena/VASP family members. Cell Motil Cytoskeleton 58:17–29

    Article  PubMed  CAS  Google Scholar 

  • Boukhelifa M, Moza M, Johansson T, Rachlin A, Parast M, Huttelmaier S, Roy P, Jockusch BM, Carpen O, Karlsson R, Otey CA (2006) The proline-rich protein palladin is a binding partner for profilin. FEBS J 273:26–33

    Article  PubMed  CAS  Google Scholar 

  • Brunton VG, MacPherson IR, Frame MC (2004) Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta 1692:121–144

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  • Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82

    Article  PubMed  CAS  Google Scholar 

  • Chin YR, Toker A (2010) The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell 38:333–344

    Article  PubMed  CAS  Google Scholar 

  • Cortesio CL, Wernimont SA, Kastner DL, Cooper KM, Huttenlocher A (2010) Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome. Arthritis Rheum 62:2556–2558

    Article  PubMed  Google Scholar 

  • De Kimpe L, Janssens K, Derua R, Armacki M, Goicoechea S, Otey C, Waelkens E, Vandoninck S, Vandenheede JR, Seufferlein T, Van Lint J (2009) Characterization of cortactin as an in vivo protein kinase D substrate: interdependence of sites and potentiation by Src. Cell Signal 21:253–263

    Article  PubMed  Google Scholar 

  • Ding HL, Ryder JW, Stull JT, Kamm KE (2009) Signaling processes for initiating smooth muscle contraction upon neural stimulation. J Biol Chem 284:15541–15548

    Article  PubMed  CAS  Google Scholar 

  • Dixon RD, Arneman DK, Rachlin AS, Sundaresan NR, Costello MJ, Campbell SL, Otey CA (2008) Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. J Biol Chem 283:6222–6231

    Article  PubMed  CAS  Google Scholar 

  • Duboscq-Bidot L, Xu P, Charron P, Neyroud N, Dilanian G, Millaire A, Bors V, Komajda M, Villard E (2008) Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc Res 77:118–125

    Article  PubMed  CAS  Google Scholar 

  • Earl J, Yan L, Vitone LJ, Risk J, Kemp SJ, McFaul C, Neoptolemos JP, Greenhalf W, Kress R, Sina-Frey M, Hahn SA, Rieder H, Bartsch DK (2006) Evaluation of the 4q32–34 locus in European familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 15:1948–1955

    Article  PubMed  CAS  Google Scholar 

  • Endlich N, Schordan E, Cohen CD, Kretzler M, Lewko B, Welsch T, Kriz W, Otey CA, Endlich K (2009) Palladin is a dynamic actin-associated protein in podocytes. Kidney Int 75:214–226

    Article  PubMed  CAS  Google Scholar 

  • Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, Di Fiore PP (1993) Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12:3799–3808

    PubMed  CAS  Google Scholar 

  • Foroud T, Pankratz N, Batchman AP, Pauciulo MW, Vidal R, Miravalle L, Goebel HH, Cushman LJ, Azzarelli B, Horak H, Farlow M, Nichols WC (2005) A mutation in myotilin causes spheroid body myopathy. Neurology 65:1936–1940

    Article  PubMed  CAS  Google Scholar 

  • Frame MC, Fincham VJ, Carragher NO, Wyke JA (2002) v-Src’s hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3:233–245

    Article  PubMed  CAS  Google Scholar 

  • Gerthoffer WT, Gunst SJ (2001) Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol 91:963–972

    PubMed  CAS  Google Scholar 

  • Godley LA, Lai F, Liu J, Zhao N, Le Beau MM (1999) TTID: a novel gene at 5q31 encoding a protein with titin-like features. Genomics 60:226–233

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea S, Arneman D, Disanza A, Garcia-Mata R, Scita G, Otey CA (2006) Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J Cell Sci 119:3316–3324

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea SM, Bednarski B, Garcia-Mata R, Prentice-Dunn H, Kim HJ, Otey CA (2009) Palladin contributes to invasive motility in human breast cancer cells. Oncogene 28:587–598

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea SM, Bednarski B, Stack C, Cowan DW, Volmar K, Thorne L, Cukierman E, Rustgi AK, Brentnall T, Hwang RF, McCulloch CA, Yeh JJ, Bentrem DJ, Hochwald SN, Hingorani SR, Kim HJ, Otey CA (2010) Isoform-specific upregulation of palladin in human and murine pancreas tumors. PLoS One 5:e10347

    Article  PubMed  Google Scholar 

  • Gorenne I, Jin L, Yoshida T, Sanders JM, Sarembock IJ, Owens GK, Somlyo AP, Somlyo AV (2006) LPP expression during in vitro smooth muscle differentiation and stent-induced vascular injury. Circ Res 98:378–385

    Article  PubMed  CAS  Google Scholar 

  • Gueders MM, Hirst SJ, Quesada-Calvo F, Paulissen G, Hacha J, Gilles C, Gosset P, Louis R, Foidart JM, Lopez-Otin C, Noel A, Cataldo DD (2010) Matrix metalloproteinase-19 deficiency promotes tenascin-C accumulation and allergen-induced airway inflammation. Am J Respir Cell Mol Biol 43:286–295

    Article  PubMed  CAS  Google Scholar 

  • Gunst SJ, Tang DD, Opazo Saez A (2003) Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung. Respir Physiol Neurobiol 137:151–168

    Article  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Yi P, Li X, Olson EN (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL (2009) Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 11:R24

    Article  PubMed  Google Scholar 

  • Hoffman JI, Kaplan S, Liberthson RR (2004) Prevalence of congenital heart disease. Am Heart J 147:425–439

    Article  PubMed  Google Scholar 

  • Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    Article  PubMed  CAS  Google Scholar 

  • Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP, Scita G (2003) Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 160:17–23

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Kern MJ, Otey CA, Wamhoff BR, Somlyo AV (2007) Angiotensin II, focal adhesion kinase, and PRX1 enhance smooth muscle expression of lipoma preferred partner and its newly identified binding partner palladin to promote cell migration. Circ Res 100:817–825

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Hastings NE, Blackman BR, Somlyo AV (2009a) Mechanical properties of the extracellular matrix alter expression of smooth muscle protein LPP and its partner palladin; relationship to early atherosclerosis and vascular injury. J Muscle Res Cell Motil 30:41–55

    Article  PubMed  Google Scholar 

  • Jin L, Yoshida T, Ho R, Owens GK, Somlyo AV (2009b) The actin-associated protein Palladin is required for development of normal contractile properties of smooth muscle cells derived from embryoid bodies. J Biol Chem 284:2121–2130

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Gan Q, Zieba BJ, Goicoechea SM, Owens GK, Otey CA, Somlyo AV (2010) The actin associated protein palladin is important for the early smooth muscle cell differentiation. PLoS One 5:e12823

    Article  PubMed  Google Scholar 

  • Jones PL (2007) Move on!: smooth muscle cell motility paired down. Circ Res 100:757–760

    Article  PubMed  CAS  Google Scholar 

  • Jones PL, Crack J, Rabinovitch M (1997) Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293

    Article  PubMed  CAS  Google Scholar 

  • Jones PL, Jones FS, Zhou B, Rabinovitch M (1999) Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a beta3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element. J Cell Sci 112(Pt 4):435–445

    PubMed  CAS  Google Scholar 

  • Jones FS, Meech R, Edelman DB, Oakey RJ, Jones PL (2001) Prx1 controls vascular smooth muscle cell proliferation and tenascin-C expression and is upregulated with Prx2 in pulmonary vascular disease. Circ Res 89:131–138

    Article  PubMed  CAS  Google Scholar 

  • Kalembeyi I, Inada H, Nishiura R, Imanaka-Yoshida K, Sakakura T, Yoshida T (2003) Tenascin-C upregulates matrix metalloproteinase-9 in breast cancer cells: direct and synergistic effects with transforming growth factor beta1. Int J Cancer 105:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69

    Article  PubMed  CAS  Google Scholar 

  • Koch, W., P. Hoppmann, A. Schomig, and A. Kastrati. 2009. Variations of specific non-candidate genes and risk of myocardial infarction: A replication study. Int J Cardiol. doi:10.1016/j.ijcard.2009.07.028

  • Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, Finn AV, Gold HK (2004) Pathologic assessment of the vulnerable human coronary plaque. Heart 90:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Labernadie A, Thibault C, Vieu C, Maridonneau-Parini I, Charriere GM (2010) Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci USA 107(49):21016–21021

    Article  PubMed  CAS  Google Scholar 

  • Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z (2000) Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 96:1496–1504

    PubMed  CAS  Google Scholar 

  • Liu XS, Li XH, Wang Y, Shu RZ, Wang L, Lu SY, Kong H, Jin YE, Zhang LJ, Fei J, Chen SJ, Chen Z, Gu MM, Lu ZY, Wang ZG (2007a) Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver. Blood 110:870–876

    Article  PubMed  CAS  Google Scholar 

  • Liu XS, Luo HJ, Yang H, Wang L, Kong H, Jin YE, Wang F, Gu MM, Chen Z, Lu ZY, Wang ZG (2007b) Palladin regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton architecture and stabilizing beta1-integrin. J Cell Biochem 100:1288–1300

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Liu X, Wang F, Huang Q, Shen S, Wang L, Xu G, Sun X, Kong H, Gu M, Chen S, Chen Z, Wang Z (2005) Disruption of palladin results in neural tube closure defects in mice. Mol Cell Neurosci 29:507–515

    Article  PubMed  CAS  Google Scholar 

  • Lusis AJ, Fogelman AM, Fonarow GC (2004) Genetic basis of atherosclerosis: part II: clinical implications. Circulation 110:2066–2071

    Article  PubMed  Google Scholar 

  • Maeda M, Asano E, Ito D, Ito S, Hasegawa Y, Hamaguchi M, Senga T (2009) Characterization of interaction between CLP36 and palladin. FEBS J 276:2775–2785

    Article  PubMed  CAS  Google Scholar 

  • Manabe I, Owens GK (2001) Recruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system. Circ Res 88:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • McNeill A, Birchall D, Straub V, Goldfarb L, Reilich P, Walter MC, Schramm N, Lochmuller H, Chinnery PF (2009) Lower limb radiology of distal myopathy due to the S60F myotilin mutation. Eur Neurol 62:161–166

    Article  PubMed  CAS  Google Scholar 

  • Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R (2009) Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 11:257–268

    Article  PubMed  CAS  Google Scholar 

  • Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    Article  PubMed  CAS  Google Scholar 

  • Mouilleron S, Guettler S, Langer CA, Treisman R, McDonald NQ (2008) Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. EMBO J 27:3198–3208

    Article  PubMed  CAS  Google Scholar 

  • Mykkanen OM, Gronholm M, Ronty M, Lalowski M, Salmikangas P, Suila H, Carpen O (2001) Characterization of human palladin, a microfilament-associated protein. Mol Biol Cell 12:3060–3073

    PubMed  CAS  Google Scholar 

  • Otey CA, Rachlin A, Moza M, Arneman D, Carpen O (2005) The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int Rev Cytol 246:31–58

    Article  PubMed  CAS  Google Scholar 

  • Otey C, Goicoechea S, Garcia-Mata R (2009a) Roles of the small GTPases RhoA and Rac1 in cell behavior. F1000 Biol Rep 1:4

    PubMed  Google Scholar 

  • Otey CA, Dixon R, Stack C, Goicoechea SM (2009b) Cytoplasmic Ig-domain proteins: cytoskeletal regulators with a role in human disease. Cell Motil Cytoskeleton 66:618–634

    Article  PubMed  CAS  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  • Parast MM, Otey CA (2000) Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 150:643–656

    Article  PubMed  CAS  Google Scholar 

  • Pogue-Geile KL, Chen R, Bronner MP, Crnogorac-Jurcevic T, Moyes KW, Dowen S, Otey CA, Crispin DA, George RD, Whitcomb DC, Brentnall TA (2006) Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3:e516

    Article  PubMed  Google Scholar 

  • Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596

    Article  PubMed  CAS  Google Scholar 

  • Rachlin AS, Otey CA (2006) Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J Cell Sci 119:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Ronty M, Taivainen A, Moza M, Otey CA, Carpen O (2004) Molecular analysis of the interaction between palladin and alpha-actinin. FEBS Lett 566:30–34

    Article  PubMed  CAS  Google Scholar 

  • Ronty M, Taivainen A, Moza M, Kruh GD, Ehler E, Carpen O (2005) Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp Cell Res 310:88–98

    Article  PubMed  Google Scholar 

  • Ronty MJ, Leivonen SK, Hinz B, Rachlin A, Otey CA, Kahari VM, Carpen OM (2006) Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation. J Invest Dermatol 126:2387–2396

    Article  PubMed  Google Scholar 

  • Ronty M, Taivainen A, Heiska L, Otey C, Ehler E, Song WK, Carpen O (2007) Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res 313:2575–2585

    Article  PubMed  Google Scholar 

  • Salaria SN, Illei P, Sharma R, Walter KM, Klein AP, Eshleman JR, Maitra A, Schulick R, Winter J, Ouellette MM, Goggins M, Hruban R (2007) Palladin is overexpressed in the non-neoplastic stroma of infiltrating ductal adenocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic cells. Cancer Biol Ther 6:324–328

    Article  PubMed  CAS  Google Scholar 

  • Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O (1999) Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum Mol Genet 8:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Sanger JW, Wang J, Holloway B, Du A, Sanger JM (2009) Myofibrillogenesis in skeletal muscle cells in zebrafish. Cell Motil Cytoskeleton 66:556–566

    Article  PubMed  Google Scholar 

  • Sarkar S, Nuttall RK, Liu S, Edwards DR, Yong VW (2006) Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Res 66:11771–11780

    Article  PubMed  CAS  Google Scholar 

  • Shiffman D, Ellis SG, Rowland CM, Malloy MJ, Luke MM, Iakoubova OA, Pullinger CR, Cassano J, Aouizerat BE, Fenwick RG, Reitz RE, Catanese JJ, Leong DU, Zellner C, Sninsky JJ, Topol EJ, Devlin JJ, Kane JP (2005) Identification of four gene variants associated with myocardial infarction. Am J Hum Genet 77:596–605

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Wamhoff BR, Hoofnagle MH, Thomas J, Neppl RL, Deering T, Helmke BP, Bowles DK, Somlyo AV, Owens GK (2006) Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem Cells 24:1678–1688

    Article  PubMed  Google Scholar 

  • Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, Neoptolemos J, Greenhalf W, Bartsch DK (2010) PALB2 mutations in European familial pancreatic cancer families. Clin Genet 78(5):490–494

    Article  PubMed  CAS  Google Scholar 

  • Tay PN, Tan P, Lan Y, Leung CH, Laban M, Tan TC, Ni H, Manikandan J, Rashid SB, Yan B, Yap CT, Lim LH, Lim YC, Hooi SC (2010) Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. Int J Oncol 37:909–926

    PubMed  CAS  Google Scholar 

  • Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752

    Article  PubMed  CAS  Google Scholar 

  • von Nandelstadh P, Ismail M, Gardin C, Suila H, Zara I, Belgrano A, Valle G, Carpen O, Faulkner G (2009) A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: a common link for Z-disc myopathies. Mol Cell Biol 29:822–834

    Article  Google Scholar 

  • Wang HV, Moser M (2008) Comparative expression analysis of the murine palladin isoforms. Dev Dyn 237:3342–3351

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li A, Wang Z, Feng X, Olson EN, Schwartz RJ (2007) Myocardin sumoylation transactivates cardiogenic genes in pluripotent 10T1/2 fibroblasts. Mol Cell Biol 27:622–632

    Article  PubMed  CAS  Google Scholar 

  • Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J (2007) Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett 255:205–218

    Article  PubMed  CAS  Google Scholar 

  • Woodsome TP, Polzin A, Kitazawa K, Eto M, Kitazawa T (2006) Agonist- and depolarization-induced signals for myosin light chain phosphorylation and force generation of cultured vascular smooth muscle cells. J Cell Sci 119:1769–1780

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Hoofnagle MH, Owens GK (2004) Myocardin and Prx1 contribute to angiotensin II-induced expression of smooth muscle alpha-actin. Circ Res 94:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Zogopoulos G, Rothenmund H, Eppel A, Ash C, Akbari MR, Hedley D, Narod SA, Gallinger S (2007) The P239S palladin variant does not account for a significant fraction of hereditary or early onset pancreas cancer. Hum Genet 121:635–637

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I deeply appreciate Drs. Avril Somlyo and Carol Otey for the enthusiastic discussion and comments on the manuscript, Bartek Zieba for assistance in art work. I apologize for not citing all of the contributions to this field due to space limitations. This work was supported by PO1 HL19242-33 to Dr. Avril Somlyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L. The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. J Muscle Res Cell Motil 32, 7–17 (2011). https://doi.org/10.1007/s10974-011-9246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9246-9

Keywords

Navigation