Skip to main content
Log in

Morphological characteristics of cardiac calcium release units in animals with metabolic and circulatory disorders

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Metabolic and circulatory disorders such as diabetes and hypertension are associated with cardiac dysfunction. Research on these types of experimental animals has observed abnormal calcium (Ca2+) sparks and waves in cells; a potential mechanism altering excitation–contraction (e–c) coupling in the myocardium. The e–c coupling depends on the intricate spatial relationship between the sarcolemma and sarcoplasmic reticulum calcium release units (CRU’s). The objective of this study was to assess for a presence or absence of abnormalities in CRU’s from type II diabetic and hypertensive rat models. Myocardial tissue underwent perfusion fixation followed by selective staining of the CRU’s and the features observed using a high voltage electron microscope. Results revealed both diabetic groups had significant increases in body weight, a tendency toward an enlarged heart, and a significant disruption of the CRU’s and displacement of transverse (t)-tubules in a longitudinal direction. The hypertensive model characteristically showed a dramatic increase in heart size, a significant increase in disrupted CRU’s and a tendency towards longitudinal t-tubule orientation. We propose the two disorders of diabetes and hypertension have a similar etiology of cardiomyopathy resulting, in part, from an increase in the number of incomplete CRU’s, due to a morphological change in the architecture and orientation of the t-tubules. These architectural changes could potentially explain the impaired calcium signaling previously observed in diabetic and hypertensive cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belke DD, Dillmann WH (2004) Altered cardiac calcium handling in diabetes. Curr Hypertens Rep 6(6):424–429

    Article  PubMed  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  • Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic Reticulum Ca2+ and Heart Failure Roles of Diastolic Leak and Ca2+ Transport. Circ Res 93(6):487–490

    Article  CAS  PubMed  Google Scholar 

  • Chien KR, Olson EN (2002) Converging pathways and principles in heart development and disease: CV@CSH. Cell 110(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg BE (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD (ed) Handbook of Physiology, Sect. 10, Skeletal Muscle. American Physiological Society, Bethesda, pp 73–112

    Google Scholar 

  • Engel J (1994) Electron microscopy of extracellular matrix components. Methods Enzymol 245:469–488

    Article  CAS  PubMed  Google Scholar 

  • Forbes MS, Plantholt BA, Sperelakis N (1977) Cytochemical staining procedures selective for sarcotubular systems of muscle: modifications and applications. J Ultrastruct Res 60(3):306–327

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C (1970) Studies of the triad. I. Structure of junction in frog twitch fibers. J Cell Biol 47:488–499

    Article  PubMed  Google Scholar 

  • Franzini-Armstrong C (1991) Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev Biol 146(2):353–363

    Article  CAS  PubMed  Google Scholar 

  • Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244(6):E528–E535

    CAS  PubMed  Google Scholar 

  • Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806

    Article  CAS  PubMed  Google Scholar 

  • Howarth FC, Jacobson M, Naseer O, Adeghate E (2005) Short-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol 90(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, Feldman DS, Györke S, Carnes CA (2007) Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 293(5):R1787–R1797

    CAS  PubMed  Google Scholar 

  • Mobley BA, Eisenberg BR (1975) Sizes of components in frog skeletal muscle measured by methods of stereology. J Gen Physiol 66:31–45

    Article  CAS  PubMed  Google Scholar 

  • Owan TE, Redfield MM (2005) Epidemiology of diastolic heart failure. Prog Cardiovasc Dis 47(5):320–332

    Article  PubMed  Google Scholar 

  • Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gómez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55(3):608–615

    Article  CAS  PubMed  Google Scholar 

  • Piccini JP, Klein L, Gheorghiade M, Bonow RO (2004) New insights into diastolic heart failure: role of diabetes mellitus. Am J Med 116(Suppl. 5A):64S–75S

    Article  PubMed  Google Scholar 

  • Pieske B, Maier LS, Bers DM, Hasenfuss G (1999) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 85(1):38–46

    CAS  PubMed  Google Scholar 

  • Shimoni Y, Firek L, Severson D, Giles W (1994) Short-term diabetes alters K+ currents in rat ventricular myocytes. Circ Res 74(4):620–628

    CAS  PubMed  Google Scholar 

  • Sommer JR, Waugh RA (1976) The ultrastructure of the mammalian cardiac muscle cell–with special emphasis on the tubular membrane systems. Am J Pathol 82(01):192–232

    CAS  PubMed  Google Scholar 

  • Song LS, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H (2006) Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci USA 103(11):4305–4310

    Article  CAS  PubMed  Google Scholar 

  • Tomita Y, Ferrans VJ (1987) Morphological study of sarcoplasmic reticulum in the atrioventricular node and bundle cells in guinea pig hearts. Am J Anat 180:100–122

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Marks AR (2003) Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem Sci 28(12):671–678

    Article  CAS  PubMed  Google Scholar 

  • Wold LE, Dutta K, Mason MM, Ren J, Cala SE, Schwanke ML, Davidoff AJ (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhou P, Xu SM, Liu Y, Feng X, Bai SH, Bai Y, Hao XM, Han Q, Zhang Y, Wang SQ (2007) Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5(2):e21

    Article  PubMed  Google Scholar 

  • Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54(11):3082–3088

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cannell MB, Phillips AR, Cooper GJ, Ward ML (2008) Altered calcium homeostasis does not explain the contractile deficit of diabetic cardiomyopathy. Diabetes 57(8):2158–2166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (B, project nos. 17300210 and 20300217 to H. Takekura) from the Japan Society for the Promotion of Science in 2005 and 2008, and by a Grant-in-Aid for Scientific Research from the National Institute of Fitness and Sports (President’s Discretionary Budget 2007 and 2008 to H. Takekura).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly F. McGrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, K.F., Yuki, A., Manaka, Y. et al. Morphological characteristics of cardiac calcium release units in animals with metabolic and circulatory disorders. J Muscle Res Cell Motil 30, 225–231 (2009). https://doi.org/10.1007/s10974-009-9191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9191-z

Keywords

Navigation