Skip to main content
Log in

Back on track – On the role of the microtubule for kinesin motility and cellular function

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The evolution of cytoskeletal filaments (actin- and intermediate-filaments, and the microtubules) and their associated motor- and non-motor-proteins has enabled the eukaryotic cell to achieve complex organizational and structural tasks. This ability to control cellular transport processes and structures allowed for the development of such complex cellular organelles like cilia or flagella in single-cell organisms and made possible the development and differentiation of multi-cellular organisms with highly specialized, polarized cells. Also, the faithful segregation of large amounts of genetic information during cell division relies crucially on the reorganization and control of the cytoskeleton, making the cytoskeleton a key prerequisite for the development of highly complex genomes. Therefore, it is not surprising that the eukaryotic cell continuously invests considerable resources in the establishment, maintenance, modification and rearrangement of the cytoskeletal filaments and the regulation of its interaction with accessory proteins. Here we review the literature on the interaction between microtubules and motor-proteins of the kinesin-family. Our particular interest is the role of the microtubule in the regulation of kinesin motility and cellular function. After an introduction of the kinesin–microtubule interaction we focus on two interrelated aspects: (1) the active allosteric participation of the microtubule during the interaction with kinesins in general and (2) the possible regulatory role of post-translational modifications of the microtubule in the kinesin–microtubule interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso MC, Vanderkerckhove J, Cross RA (1998) Proteolytic mapping of kinesin/ncd-microtubule interface: nucleotide-dependent conformational changes in the loops L8 and L12. EMBO J 17:945–951

    PubMed  CAS  Google Scholar 

  • Arce CA, Barra HS, Rodriguez JA, Caputto R (1975) Tentative identification of the amino acid that binds tyrosine as a single unit into a soluble brain protein. FEBS Lett 50:5–7

    PubMed  CAS  Google Scholar 

  • Argarana CE, Barra HS, Caputto R (1978) Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase. Mol Cell Biochem 19:17–21

    PubMed  CAS  Google Scholar 

  • Argarana CE, Barra HS, Caputto R (1980) Tubulinyl-tyrosine carboxypeptidase from chicken brain: properties and partial purification. J Neurochem 34:114–118

    PubMed  CAS  Google Scholar 

  • Asbury CL, Fehr AN, Block SM (2003) Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302:2130–2134

    PubMed  CAS  Google Scholar 

  • Bathe F, Hahlen K, Dombi R, Driller L, Schliwa M and Woehlke G (2005) The complex interplay between the neck and hinge domains in kinesin-1 dimerization and motor activity. Mol Biol Cell 16: 3529–3537

    PubMed  CAS  Google Scholar 

  • Bhattacharyya B, Sackett DL, Wolff J (1985) Tubulin, hybrid dimers, and tubulin S. Stepwise charge reduction and polymerization. J Biol Chem 260:10208–10216

    PubMed  CAS  Google Scholar 

  • Bobinnec Y, Moudjou M, Fouquet JP, Desbruyeres E, Edde B, Bornens M (1998) Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton 39:223–232

    PubMed  CAS  Google Scholar 

  • Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, Larcher JC (2001) Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem 276:12839–12848

    PubMed  CAS  Google Scholar 

  • Boucher D, Larcher JC, Gros F, Denoulet P (1994) Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry 33:12471–12477

    PubMed  CAS  Google Scholar 

  • Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    PubMed  CAS  Google Scholar 

  • Bre MH, Redeker V, Quibell M, Darmanaden-Delorme J, Bressac C, Cosson J, Huitorel P, Schmitter JM, Rossler J, Johnson T and others (1996) Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J Cell Sci 109: 727–738

    Google Scholar 

  • Bre MH, Redeker V, Vinh J, Rossier J, Levilliers N (1998) Tubulin polyglycylation: differential posttranslational modification of dynamic cytoplasmic and stable axonemal microtubules in paramecium. Mol Biol Cell 9:2655–2665

    Google Scholar 

  • Brown JM, Hardin C, Gaertig J (1999) Rotokinesis, a novel phenomenon of cell locomotion-assisted cytokinesis in the ciliate Tetrahymena thermophila. Cell Biol Int 23:841–848

    PubMed  CAS  Google Scholar 

  • Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308–312

    PubMed  CAS  Google Scholar 

  • Chang W, Webster DR, Salam AA, Gruber D, Prasad A, Eiserich JP, Bulinski JC (2002) Alteration of the C-terminal amino acid of tubulin specifically inhibits myogenic differentiation. J Biol Chem 277:30690–30698

    PubMed  CAS  Google Scholar 

  • Coy DL, Hancock WO, Wagenbach M, Howard J (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1:288–292

    PubMed  CAS  Google Scholar 

  • de Cuevas M, Tao T, Goldstein LS (1992) Evidence that the stalk of Drosophila kinesin heavy chain is an alpha-helical coiled coil. J Cell Biol 116:957–965

    PubMed  Google Scholar 

  • Duan J, Gorovsky MA (2002) Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice. Curr Biol 12:313–316

    PubMed  CAS  Google Scholar 

  • Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794

    PubMed  CAS  Google Scholar 

  • Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA (1999) Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 96:6365–6370

    PubMed  CAS  Google Scholar 

  • Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K (1993) Characterization of the tubulin-tyrosine ligase. J Cell Biol 120:725–732

    PubMed  CAS  Google Scholar 

  • Gaertig J, Cruz MA, Bowen J, Gu L, Pennock DG, Gorovsky MA (1995) Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. J Cell Biol 129:1301–1310

    PubMed  CAS  Google Scholar 

  • Gaertig J, Thatcher TH, McGrath KE, Callahan RC, Gorovsky MA (1993) Perspectives on tubulin isotype function and evolution based on the observation that Tetrahymena thermophila microtubules contain a single alpha- and beta-tubulin. Cell Motil Cytoskeleton 25:243–253

    PubMed  CAS  Google Scholar 

  • Gagnon C, White D, Cosson J, Huitorel P, Edde B, Desbruyeres E, Paturle-Lafanechere L, Multigner L, Job D, Cibert C (1996) The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J Cell Sci 109:1545–1553

    PubMed  CAS  Google Scholar 

  • Gilbert SP, Moyer ML, Johnson KA (1998) Alternating site mechanism of the kinesin ATPase. Biochemistry 37:792–799

    PubMed  CAS  Google Scholar 

  • Goldstein LS (1993) With apologies to scheherazade: tails of 1001 kinesin motors. Annu Rev Genet 27:319–351

    PubMed  CAS  Google Scholar 

  • Goldstein LS (2001) Molecular motors: from one motor many tails to one motor many tales. Trends Cell Biol 11:477–482

    PubMed  CAS  Google Scholar 

  • Gurland G, Gundersen GG (1995) Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol 131:1275–1290

    PubMed  CAS  Google Scholar 

  • Gyoeva FK, Gelfand VI (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature 353:445–448

    PubMed  CAS  Google Scholar 

  • Hackney DD (1994) Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci USA 91:6865–6869

    PubMed  CAS  Google Scholar 

  • Hirose K, Lockhart A, Cross RA, Amos LA (1995) Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376:277–279

    PubMed  CAS  Google Scholar 

  • Hirose K, Lowe J, Alonso M, Cross RA, Amos LA (1999) 3D electron microscopy of the interaction of kinesin with tubulin. Cell Struct Funct. 24:277–284

    PubMed  CAS  Google Scholar 

  • Hoenger A, Milligan RA (1997) Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry. J Mol Biol 265:553–564

    PubMed  CAS  Google Scholar 

  • Hoenger A, Sablin EP, Vale RD, Fletterick RJ, Milligan RA (1995) Three-dimensional structure of a tubulin-motor-protein complex. Nature 376:271–274

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    PubMed  CAS  Google Scholar 

  • Huitorel P, White D, Fouquet JP, Kann ML, Cosson J, Gagnon C (2002) Differential distribution of glutamylated tubulin isoforms along the sea urchin sperm axoneme. Mol Reprod Dev 62:139–148

    PubMed  CAS  Google Scholar 

  • Hutchens JA, Hoyle HD, Turner FR, Raff EC (1997) Structurally similar Drosophila alpha-tubulins are functionally distinct in vivo. Mol Biol Cell 8:481–500

    PubMed  CAS  Google Scholar 

  • Idriss HT (2000) Phosphorylation of tubulin tyrosine ligase: a potential mechanism for regulation of alpha-tubulin tyrosination. Cell Motil Cytoskeleton 46:1–5

    PubMed  CAS  Google Scholar 

  • Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van Dijk J, Boucher D, van Dorsselaer A and others (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308: 1758–1762

    Google Scholar 

  • Jimenez MA, Evangelio JA, Aranda C, Lopez-Brauet A, Andreu D, Rico M, Lagos R, Andreu JM, Monasterio O (1999) Helicity of alpha(404–451) and beta(394–445) tubulin C-terminal recombinant peptides. Protein Sci 8:788–799

    Google Scholar 

  • Johnson KA (1998) The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content. J Cell Sci 111:313–320

    PubMed  CAS  Google Scholar 

  • Johnson CS, Buster D, Scholey JM (1990) Light chains of sea urchin kinesin identified by immunoadsorption. Cell Motil Cytoskeleton 16:204–213

    PubMed  CAS  Google Scholar 

  • Kalisz HM, Erck C, Plessmann U, Wehland J (2000) Incorporation of nitrotyrosine into alpha-tubulin by recombinant mammalian tubulin-tyrosine ligase. Biochim Biophys Acta 1481:131–138

    PubMed  CAS  Google Scholar 

  • Kann ML, Soues S, Levilliers N, Fouquet JP (2003) Glutamylated tubulin: diversity of expression and distribution of isoforms. Cell Motil Cytoskeleton 55:14–25

    PubMed  CAS  Google Scholar 

  • Kapoor TM, Compton DA (2002) Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J Cell Biol 157:551–556

    PubMed  CAS  Google Scholar 

  • Karabay A, Walker RA (1999a) Identification of microtubule binding sites in the Ncd tail domain. Biochemistry 38:1838–1849

    CAS  Google Scholar 

  • Karabay A, Walker RA (1999b) The Ncd tail domain promotes microtubule assembly and stability. Biochem Biophys Res Commun 258:39–43

    CAS  Google Scholar 

  • Karabay A, Walker RA (2003) Identification of Ncd tail domain-binding sites on the tubulin dimer. Biochem Biophys Res Commun 305:523–528

    PubMed  CAS  Google Scholar 

  • Kashina AS, Baskin RJ, Cole DG, Wedaman KP, Saxton WM, Scholey JM (1996) A bipolar kinesin. Nature 379:270–272

    PubMed  CAS  Google Scholar 

  • Kirchner J, Seiler S, Fuchs S, Schliwa M (1999) Functional anatomy of the kinesin molecule in vivo. EMBO J 18:4404–4413

    PubMed  CAS  Google Scholar 

  • Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109:347–358

    PubMed  CAS  Google Scholar 

  • Krebs A, Goldie KN, Hoenger A (2004) Complex formation with kinesin motor domains affects the structure of microtubules. J Mol Biol 335:139–153

    PubMed  CAS  Google Scholar 

  • Kreitzer G, Liao G, Gundersen GG (1999) Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 10:1105–1118

    PubMed  CAS  Google Scholar 

  • Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD. (1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555

    PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Vaisberg YA, Rothwell SW, Murphy DB, Gelfand VI (1989) Isolation of a 45-kDa fragment from the kinesin heavy chain with enhanced ATPase and microtubule-binding activities. J Biol Chem 264:589–595

    PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Vaisberg EA, Shanina NA, Magretova NN, Chernyak VY, Gelfand VI (1988) The quaternary structure of bovine brain kinesin. EMBO J 7:353–356

    PubMed  CAS  Google Scholar 

  • Lafanechere L, Courtay-Cahen C, Kawakami T, Jacrot M, Rudiger M, Wehland J, Job D, Margolis RL (1998) Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 111:171–181

    PubMed  CAS  Google Scholar 

  • Lakamper S, Meyhofer E (2005) The E-hook of tubulin interacts with kinesin’s head to increase processivity and speed. Biophys J 89:3223–3234

    PubMed  CAS  Google Scholar 

  • Lakamper S, Kallipolitou A, Woehlke G, Schliwa M, Meyhofer E (2003) Single fungal kinesin motor molecules move processively along microtubules. Biophys J 84:1833–1843

    PubMed  CAS  Google Scholar 

  • Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P (1996) Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem 271:22117–22124

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J and others (2004) A standardized kinesin nomenclature. J Cell Biol 167: 19–22

    Google Scholar 

  • Levilliers N, Fleury A, Hill AM (1995) Monoclonal and polyclonal antibodies detect a new type of post-translational modification of axonemal tubulin. J Cell Sci 108:3013–3028

    Google Scholar 

  • Liao G, Gundersen GG (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273:9797–9803

    PubMed  CAS  Google Scholar 

  • Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    PubMed  CAS  Google Scholar 

  • Mary J, Redeker V, Le Caer JP, Rossier J, Schmitter JM (1996) Posttranslational modifications in the C-terminal tail of axonemal tubulin from sea urchin sperm. J Biol Chem 271:9928–9933

    PubMed  CAS  Google Scholar 

  • Mencarelli C, Bre MH, Levilliers N, Dallai R (2000) Accessory tubules and axonemal microtubules of Apis mellifera sperm flagellum differ in their tubulin isoform content. Cell Motil Cytoskeleton 47:1–12

    PubMed  CAS  Google Scholar 

  • Meyhofer E, Howard J (1995) The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci USA 92:574–578

    PubMed  CAS  Google Scholar 

  • Mialhe A, Lafanechere L, Treilleux I, Peloux N, Dumontet C, Bremond A, Panh MH, Payan R, Wehland J, Margolis RL and others (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61: 5024–5027

    Google Scholar 

  • Million K, Larcher J, Laoukili J, Bourguignon D, Marano F, Tournier F (1999) Polyglutamylation and polyglycylation of alpha- and beta-tubulins during in vitro ciliated cell differentiation of human respiratory epithelial cells. J Cell Sci 112:4357–4366

    Google Scholar 

  • Multigner L, Pignot-Paintrand I, Saoudi Y, Job D, Plessmann U, Rudiger M, Weber K (1996) The A and B tubules of the outer doublets of sea urchin sperm axonemes are composed of different tubulin variants. Biochemistry 35:10862–10871

    PubMed  CAS  Google Scholar 

  • Murofushi H (1980) Purification and characterization of tubulin-tyrosine ligase from porcine brain. J Biochem (Tokyo) 87:979–984

    CAS  Google Scholar 

  • Muto E, Sakai H, Kaseda K (2005) Long-range cooperative binding of kinesin to a microtubule in the presence of ATP. J Cell Biol 168:691–696

    PubMed  CAS  Google Scholar 

  • Nielsen MG, Turner FR, Hutchens JA, Raff EC (2001) Axoneme-specific beta-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr Biol 11:529–533

    PubMed  CAS  Google Scholar 

  • Nitta R, Kikkawa M, Okada Y, Hirokawa N (2004) KIF1A alternately uses two loops to bind microtubules. Science 305:678–683

    PubMed  CAS  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    PubMed  CAS  Google Scholar 

  • Okada Y, Hirokawa N (1999) A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283:1152–1157

    PubMed  CAS  Google Scholar 

  • Okada Y, Hirokawa N (2000) Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci USA 97:640–645

    PubMed  CAS  Google Scholar 

  • Ovechkina Y, Wagenbach M, Wordeman L (2002) K-loop insertion restores microtubule depolymerizing activity of a “neckless” MCAK mutant. J Cell Biol 159:557–562

    PubMed  CAS  Google Scholar 

  • Paturle-Lafanechere L, Edde B, Denoulet P, Van Dorsselaer A, Mazarguil H, Le Caer JP, Wehland J, Job D (1991) Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30:10523–10528

    PubMed  CAS  Google Scholar 

  • Plessmann U, Weber K (1997) Mammalian sperm tubulin: an exceptionally large number of variants based on several posttranslational modifications. J Protein Chem 16:385–390

    PubMed  CAS  Google Scholar 

  • Purro SA, Bisig CG, Contin MA, Barra HS, Arce CA (2003) Post-translational incorporation of the antiproliferative agent azatyrosine into the C-terminus of alpha-tubulin. Biochem J 375:121–129

    PubMed  CAS  Google Scholar 

  • Raff EC, Fackenthal JD, Hutchens JA, Hoyle HD, Turner FR (1997) Microtubule architecture specified by a beta-tubulin isoform. Science 275:70–73

    PubMed  CAS  Google Scholar 

  • Raybin D, Flavin M (1977a) Enzyme which specifically adds tyrosine to the alpha chain of tubulin. Biochemistry 16:2189–2194

    CAS  Google Scholar 

  • Raybin D, Flavin M (1977b) Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol 73:492–504

    CAS  Google Scholar 

  • Redeker V, Frankfurter A, Parker SK, Rossier J, Detrich HW 3rd (2004) Posttranslational modification of brain tubulins from the Antarctic fish Notothenia coriiceps: reduced C-terminal glutamylation correlates with efficient microtubule assembly at low temperature. Biochemistry 43:12265–12274

    PubMed  CAS  Google Scholar 

  • Redeker V, Levilliers N, Schmitter JM, Le Caer JP, Rossier J, Adoutte A, Bre MH (1994) Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science 266:1688–1691

    PubMed  CAS  Google Scholar 

  • Redeker V, Levilliers N, Vinolo E, Rossier J, Jaillard D, Burnette D, Gaertig J, Bre MH (2005) Mutations of tubulin glycylation sites reveal cross-talk between the C termini of alpha- and beta-tubulin and affect the ciliary matrix in Tetrahymena. J Biol Chem 280:596–606

    PubMed  CAS  Google Scholar 

  • Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M and others (1999) A structural change in the kinesin motor protein that drives motility. Nature 402: 778–784

    Google Scholar 

  • Rudiger M, Plessmann U, Rudiger AH, Weber K (1995) Beta tubulin of bull sperm is polyglycylated. FEBS Lett 364:147–151

    Google Scholar 

  • Sackett DL, Bhattacharyya B, Wolff J (1985) Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 260:43–45

    PubMed  CAS  Google Scholar 

  • Schafer F, Deluca D, Majdic U, Kirchner J, Schliwa M, Moroder L, Woehlke G (2003) A conserved tyrosine in the neck of a fungal kinesin regulates the catalytic motor core. EMBO J 22:450–458

    PubMed  CAS  Google Scholar 

  • Scholey JM, Heuser J, Yang JT, Goldstein LS (1989) Identification of globular mechanochemical heads of kinesin. Nature 338:355–357

    PubMed  CAS  Google Scholar 

  • Seiler S, Kirchner J, Horn C, Kallipolitou A, Woehlke G, Schliwa M (2000) Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat Cell Biol 2:333–338

    PubMed  CAS  Google Scholar 

  • Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 21:4896–4905

    PubMed  CAS  Google Scholar 

  • Shiroguchi K, Ohsugi M, Edamatsu M, Yamamoto T, Toyoshima YY (2003) The second microtubule-binding site of monomeric kid enhances the microtubule affinity. J Biol Chem 278:22460–22465

    PubMed  CAS  Google Scholar 

  • Skiniotis G, Cochran JC, Muller J, Mandelkow E, Gilbert SP, Hoenger A (2004) Modulation of kinesin binding by the C-termini of tubulin. EMBO J 23:989–999

    PubMed  CAS  Google Scholar 

  • Song YH, Mandelkow E (1993) Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. Proc Natl Acad Sci USA 90:1671–1675

    PubMed  CAS  Google Scholar 

  • Song YH, Marx A, Muller J, Woehlke G, Schliwa M, Krebs A, Hoenger A, Mandelkow E (2001) Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. EMBO J 20:6213–6225

    PubMed  CAS  Google Scholar 

  • Stock MF, Chu J, Hackney DD (2003) The kinesin family member BimC contains a second microtubule binding region attached to the N terminus of the motor domain. J Biol Chem 278:52315–52322

    PubMed  CAS  Google Scholar 

  • Sullivan KF, Cleveland DW (1986) Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA 83:4327–4331

    PubMed  CAS  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    PubMed  CAS  Google Scholar 

  • Thazhath R, Liu C, Gaertig J (2002) Polyglycylation domain of beta-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat Cell Biol 4:256–259

    PubMed  CAS  Google Scholar 

  • Thorn KS, Ubersax JA, Vale RD (2000) Engineering the processive run length of the kinesin motor. J Cell Biol 151:1093–1100

    PubMed  CAS  Google Scholar 

  • Tucker C, Goldstein LS (1997) Probing the kinesin–microtubule interaction. J Biol Chem 272:9481–9488

    PubMed  CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    PubMed  CAS  Google Scholar 

  • Vale RD, Coppin CM, Malik F, Kull FJ, Milligan RA (1994) Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules. J Biol Chem 269:23769–23775

    PubMed  CAS  Google Scholar 

  • Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453

    PubMed  CAS  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    PubMed  CAS  Google Scholar 

  • Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA (1998) Light chain-dependent regulation of Kinesin’s interaction with microtubules. J Cell Biol 143:1053–1066

    PubMed  CAS  Google Scholar 

  • Verhey KJ, Rapoport TA (2001) Kinesin carries the signal. Trends Biochem Sci 26:545–550

    PubMed  CAS  Google Scholar 

  • Wang Z, Sheetz MP (2000) The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys J 78:1955–1964

    Article  PubMed  CAS  Google Scholar 

  • Webster DR, Wehland J, Weber K, Borisy GG (1990) Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Cell Biol 111:113–122

    PubMed  CAS  Google Scholar 

  • Wendt T, Karabay A, Krebs A, Gross H, Walker R, Hoenger A (2003) A structural analysis of the interaction between ncd tail and tubulin protofilaments. J Mol Biol 333:541–552

    PubMed  CAS  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    PubMed  CAS  Google Scholar 

  • Woehlke G (2001) A look into kinesin’s powerhouse. FEBS Lett 508:291–294

    PubMed  CAS  Google Scholar 

  • Woehlke G, Ruby AK, Hart CL, Ly B, Hom-Booher N, Vale RD (1997) Microtubule interaction site of the kinesin motor. Cell 90:207–216

    PubMed  CAS  Google Scholar 

  • Xia L, Hai B, Gao Y, Burnette D, Thazhath R, Duan J, Bre MH, Levilliers N, Gorovsky MA, Gaertig J (2000) Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J Cell Biol 149:1097–1106

    PubMed  CAS  Google Scholar 

  • Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Zhang B, Bruce J, Trojanowski JQ, Lee VM (2003) Reduction of detyrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes. J Neurosci 23:10662–10671

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from DFG, DARPA, NIH and NSF. Furthermore, we would like to thank Manfred Schliwa and an unknown reviewer for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Meyhöfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakämper, S., Meyhöfer, E. Back on track – On the role of the microtubule for kinesin motility and cellular function. J Muscle Res Cell Motil 27, 161–171 (2006). https://doi.org/10.1007/s10974-005-9052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-005-9052-3

Keywords

Navigation