Skip to main content
Log in

Application of aging effect model in numerical simulation for predicting spontaneous combustion of coal stockpiles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The conventional Arrhenius equation that estimates the heat generation of coal in numerical simulation has been widely applied. However, the aging effect markedly influences the exothermic behavior of coal at low temperature and cannot be achieved using the conventional Arrhenius equation. In this paper, an improved wire-mesh basket test was performed to measure the temperature and concentrations of CO and CO2 emitted from coal piles. The aging effect model based on the theory of equivalent oxidation exposure time successfully matched the experimental results. Then, a two-dimensional (2D) multifield coupling model of coal stockpiles was developed considering the aging effect to investigate the developments on values and moving paths of temperature and O2 concentration. Effects of decay-power factor, which determines the diminishing coal oxidation, and other main variables on spontaneous combustion of coal stockpiles were systematically investigated. The results indicated a unique critical value of 1.25 × 10–6 s−1 for decay-power factor. Increasing decay-power factor enlarged the safe storage time and hardly affected the moving paths of the hotspot. There are two critical values for particle size (0.7 mm, 9 mm) and porosity (0.18, 0.58), and one critical value for wind velocity (8.5 m s−1) and stockpile width (9 m). Porosity and stockpile width have significant effects on the self-ignition of coal stockpiles when their values are lower than the base ones (0.33 and 15 m). The model considering aging effect is expected to reliably predict the spontaneous combustion of coal stockpile and become the tool for inspecting the reasonability of the relative preventing measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tang Y, Guo P. Experimental investigation on spontaneous combustion of coal affected by exothermic reaction of polyurethane in underground coal mines. J Therm Anal Calorim. 2022;147(1):337–46. https://doi.org/10.1007/s10973-020-10312-x.

    Article  CAS  Google Scholar 

  2. Yuan H, Restuccia F, Richter F, Rein G. A computational model to simulate self-heating ignition across scales, configurations, and coal origins. Fuel. 2019;236:1100–9. https://doi.org/10.1016/j.fuel.2018.09.065.

    Article  CAS  Google Scholar 

  3. Zhang H, Zhang X, Wang Y, Wang J, Sasaki K. Study on spontaneous combustion of lignite based on the theory of equivalent oxidation exposure time. J China Coal Soc. 2018;43(5):1358–64. https://doi.org/10.13225/j.cnki.jccs.2017.1170.

    Article  Google Scholar 

  4. Yutao Z, Yuanbo Z, Yaqing L, Xueqiang S, Yujie Z. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents. Energy. 2021;234: 121299. https://doi.org/10.1016/j.energy.2021.121299.

    Article  CAS  Google Scholar 

  5. Shi X, Chen X, Zhang Y, Zhang Y, Guo R, Zhao T, et al. Numerical simulation of coal dust self–ignition and combustion under inclination conditions. Energy. 2022;239: 122227. https://doi.org/10.1016/j.energy.2021.122227.

    Article  CAS  Google Scholar 

  6. Chen X, Shi X, Zhang Y, Zhang Y, Ma Q. Numerical simulation study on coal spontaneous combustion: effect of porosity distribution. Combust Sci Technol. 2021. https://doi.org/10.1080/00102202.2021.1961760.

    Article  Google Scholar 

  7. Wen H, Yu Z, Deng J, Zhai X. Spontaneous ignition characteristics of coal in a large-scale furnace: an experimental and numerical investigation. Appl Therm Eng. 2017;114:583–92. https://doi.org/10.1016/j.applthermaleng.2016.12.022.

    Article  CAS  Google Scholar 

  8. Li Y, Shi X, Zhang Y, Xue J, Chen X, Zhang Y, et al. Numerical investigation on the gas and temperature evolutions during the spontaneous combustion of coal in a large-scale furnace. Fuel. 2021;287: 119557. https://doi.org/10.1016/j.fuel.2020.119557.

    Article  CAS  Google Scholar 

  9. Cheng F, Chang Z, Deng J, Nan F, Zhang A, Li B. Numerical evaluation of inclined heat pipes on suppressing spontaneous coal combustion. Heat Mass Transf. 2020;56(6):1861–74. https://doi.org/10.1007/s00231-020-02819-8.

    Article  CAS  Google Scholar 

  10. Chu R, Wang M, Meng X, Liu P, Liu Z, Wu J, et al. Numerical simulation and application experiment of the spontaneous combustion tendency of a coal stockpile covered with pulverized coal. Can J Chem Eng. 2020;98(2):616–24. https://doi.org/10.1002/cjce.23643.

    Article  CAS  Google Scholar 

  11. Yang S, Zhou B, Wang C. Investigation on coal spontaneous combustion in the gob of Y type ventialtion caving face: a case study. Process Saf Environ Prot. 2021;148:590–603. https://doi.org/10.1016/j.psep.2020.11.024.

    Article  CAS  Google Scholar 

  12. Xiao Y, Liu KH, Pang P, Shu CM. Thermokinetics behaviour and parameters for spontaneous combustion of carbonised powders and oxidised powders from preparation of coal-based activated carbon. J Therm Anal Calorim. 2021;144:415–24. https://doi.org/10.1007/s10973-020-10441-3.

    Article  CAS  Google Scholar 

  13. Chu T, Li P, Chen Y. Risk assessment of gas control and spontaneous combustion of coal under gas drainage of an upper tunnel. Int J Min Sci Technol. 2019;29(3):491–8. https://doi.org/10.1016/j.ijmst.2018.05.002.

    Article  CAS  Google Scholar 

  14. Liu Y, Wen H, Guo J, Jin Y, Wei G, Yang Z. Coal spontaneous combustion and N2 suppression in triple goafs: a numerical simulation and experimental study. Fuel. 2020;271: 117625. https://doi.org/10.1016/j.fuel.2020.117625.

    Article  CAS  Google Scholar 

  15. Xu Y, Li Z, Liu H, Zhai X, Li R, Song P, et al. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob. J Clean Prod. 2020;273: 122925.

    Article  CAS  Google Scholar 

  16. Xia W, Yang J, Liang C. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Appl Surf Sci. 2014;293:293–8. https://doi.org/10.1016/j.apsusc.2013.12.151.

    Article  CAS  Google Scholar 

  17. Tang Y, Zhong X, Li G, Yang Z, Shi G. Simulation of dynamic temperature evolution in an underground coal fire area based on an optimised thermal–hydraulic–chemical model. Combust Theory Model. 2019;23(1):127–46. https://doi.org/10.1080/13647830.2018.1492742.

    Article  CAS  Google Scholar 

  18. Zhang L, Qin B, Shi B, Wen K. Formation mechanism of foamed gel for controlling the coal spontaneous combustion. Combust Sci Technol. 2016;188(1):132–43.

    Article  CAS  Google Scholar 

  19. Liu X, Guo G, Li H. Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters. Results Phys. 2019;12:1956–63. https://doi.org/10.1016/j.rinp.2019.02.006.

    Article  Google Scholar 

  20. Zhu H, Song Z, Tan B, Hao Y. Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J Loss Prev Process Ind. 2013;26(1):236–44. https://doi.org/10.1016/j.jlp.2012.11.006.

    Article  CAS  Google Scholar 

  21. Zhang J, Liang Y, Ren T, Wang Z, Wang G. Transient CFD modelling of low-temperature spontaneous heating behaviour in multiple coal stockpiles with wind forced convection. Fuel Process Technol. 2016;149:55–74. https://doi.org/10.1016/j.fuproc.2016.04.011.

    Article  CAS  Google Scholar 

  22. Zheng H, Wang J, Yu Q. Simulation of spontaneous combustion region in coal piles under multi-field coupling. Int J Coal Prep Util. 2021;41(12):855–67. https://doi.org/10.1080/19392699.2018.1538976.

    Article  CAS  Google Scholar 

  23. Kim CJ, Sohn CH. Effects of wind barrier design and closed coal storage on spontaneous ignition of coal stockpiles. J Loss Prev Process Ind. 2016;40:529–36. https://doi.org/10.1016/j.fuel.2016.02.059.

    Article  CAS  Google Scholar 

  24. Qu G, Li H, Jia T, Wang L. Experimental and numerical simulation and study of spontaneous combustion characteristic of coal piles. China Saf Sci J. 2021;31(12):69–77. https://doi.org/10.16265/j.cnki.issn1003-3033.2021.12.010.

    Article  CAS  Google Scholar 

  25. Zhang Y, Wang J, Xue S, Wu J, Chang L, Li Z. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. Int J Coal Geol. 2016;154–155:155–64. https://doi.org/10.1016/j.coal.2016.01.002.

    Article  CAS  Google Scholar 

  26. Thabari JA, Supit S, Nirbito W, Muharam Y, Nugroho YS. Modeling on the effect of heat exchanger submersion on controlling spontaneous combustion in a coal pile. J Adv Res Fluid Mech Therm Sci. 2021;81(1):158–64.

    Article  Google Scholar 

  27. Zhang J, Choi W, Ito T, Takahashi K, Fujita M. Modelling and parametric investigations on spontaneous heating in coal pile. Fuel. 2016;176:181–9. https://doi.org/10.1016/j.fuel.2016.02.059.

    Article  CAS  Google Scholar 

  28. Arisoy A, Beamish B. Reaction kinetics of coal oxidation at low temperatures. Fuel. 2015;159:412–7. https://doi.org/10.1016/j.fuel.2015.06.054.

    Article  CAS  Google Scholar 

  29. Yuan L, Smith AC. CFD modeling of spontaneous heating in a large-scale coal chamber. J Loss Prev Process Ind. 2009;22(4):426–33. https://doi.org/10.1016/j.jlp.2009.02.016.

    Article  CAS  Google Scholar 

  30. Miura K, Ohgaki H, Sato N, Matsumoto M. Formulation of the heat generation rate of low-temperature oxidation of coal by measuring heat flow and weight change at constant temperatures using thermogravimetry-differential scanning calorimetry. Energy Fuels. 2017;31(11):11669–80. https://doi.org/10.1021/acs.energyfuels.7b01817.

    Article  CAS  Google Scholar 

  31. Baris K, Kizgut S, Didari V. Low-temperature oxidation of some Turkish coals. Fuel. 2012;93:423–32. https://doi.org/10.1016/j.fuel.2011.08.066.

    Article  CAS  Google Scholar 

  32. Song JJ, Deng J, Zhao JY, Zhang YN, Shu CM. Comparative analysis of exothermic behaviour of fresh and weathered coal during low-temperature oxidation. Fuel. 2021;289: 119942. https://doi.org/10.1016/j.fuel.2020.119942.

    Article  CAS  Google Scholar 

  33. Zhang J, An J, Wang Y, Al Mamun NA, Pan R. Philosophy of longwall goaf inertisation for coal self-heating control, proactive or reactive? Int J Heat Mass Transf. 2019;141:542–53. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.004.

    Article  Google Scholar 

  34. Zhang J, Ren T, Liang Y, Wang Z. A review on numerical solutions to self-heating of coal stockpile: mechanism, theoretical basis, and variable study. Fuel. 2016;182:80–109. https://doi.org/10.1016/j.fuel.2016.05.087.

    Article  CAS  Google Scholar 

  35. Zarrouk SJ, O’Sullivan MJ. Self-heating of coal: the diminishing reaction rate. Chem Eng J. 2006;119(2–3):83–92. https://doi.org/10.1016/j.cej.2006.03.007.

    Article  CAS  Google Scholar 

  36. Tomaszewicz M, Łabojko G, Tomaszewicz G, Kotyczka-Morańska M. The kinetics of CO2 gasification of coal chars. J Therm Anal Calorim. 2013;113(3):1327–35. https://doi.org/10.1007/s10973-013-2961-2.

    Article  CAS  Google Scholar 

  37. Zhang H, Sasaki K, Zhang X, Sugai Y, Wang Y. Numerical simulations on the self-heating behaviours of coal piles considering aging effect. Combust Theory Model. 2019;23(6):1169–90. https://doi.org/10.1080/13647830.2019.1644378.

    Article  CAS  Google Scholar 

  38. Wang H, Dlugogorski BZ, Kennedy EM. Oxygen consumption by a bituminous coal: time dependence of the rate of oxygen consumption. Combust Sci Technol. 2002;174(9):165–85. https://doi.org/10.1080/713713083.

    Article  Google Scholar 

  39. Sasaki K, Miyakoshi H, Otsuka K. Spontaneous combustion of coal in the low temperature range-application of exposure equivalent-time to numerical analysis. J Min Metall Inst Jpn. 1987;103(11):771–5. https://doi.org/10.2473/shigentosozai1953.103.1197_771.

    Article  Google Scholar 

  40. Kaji R, Hishinuma Y, Nakamura Y. Low temperature oxidation of coals-a calorimetric study. Fuel. 1987;66(2):154–7. https://doi.org/10.1016/0016-2361(87)90233-X.

    Article  CAS  Google Scholar 

  41. El Mejdoub N, Delfosse L. Elovichian kinetics during chemisorption of oxygen on semicoke. Combust Flame. 1989;77(1):31–9. https://doi.org/10.1016/0010-2180(89)90102-8.

    Article  Google Scholar 

  42. Zhang Y, Wu J, Chang L, Wang J, Li Z. Changes in the reaction regime during low-temperature oxidation of coal in confined spaces. J Loss Prev Process Ind. 2013;26(6):1221–9. https://doi.org/10.1016/j.jlp.2013.05.008.

    Article  CAS  Google Scholar 

  43. Restuccia F, Fernandez-Anez N, Rein G. Experimental measurement of particle size effects on the self-heating ignition of biomass piles: homogeneous samples of dust and pellets. Fuel. 2019;256: 115838. https://doi.org/10.1016/j.fuel.2019.115838.

    Article  CAS  Google Scholar 

  44. Taraba B, Michalec Z, Michalcová V, Blejchař T, Bojko M, Kozubková M. CFD simulations of the effect of wind on the spontaneous heating of coal stockpiles. Fuel. 2014;118:107–12. https://doi.org/10.1016/j.fuel.2013.10.064.

    Article  CAS  Google Scholar 

  45. Wu D, Norman F, Schmidt M, Vanierschot M, Verplaetsen F, Berghmans J, et al. Numerical investigation on the self-ignition behaviour of coal dust accumulations: The roles of oxygen, diluent gas and dust volume. Fuel. 2017;188:500–10. https://doi.org/10.1016/j.fuel.2016.10.063.

    Article  CAS  Google Scholar 

  46. Hooman K, Maas U. Theoretical analysis of coal stockpile self-heating. Fire Saf J. 2014;67:107–12. https://doi.org/10.1016/j.firesaf.2014.05.011.

    Article  CAS  Google Scholar 

  47. Ejlali A, Mee DJ, Hooman K, Beamish BB. Numerical modelling of the self-heating process of a wet porous medium. Int J Heat Mass Transf. 2011;54(25–26):5200–6. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.025.

    Article  Google Scholar 

  48. Akgün F, Essenhigh RH. Self-ignition characteristics of coal stockpiles: theoretical prediction from a two-dimensional unsteady-state model. Fuel. 2001;80(3):409–15. https://doi.org/10.1016/S0016-2361(00)00097-1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant numbers [20K21163] and [20H02684])

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemeng Zhang.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, X., Wang, Y. et al. Application of aging effect model in numerical simulation for predicting spontaneous combustion of coal stockpiles. J Therm Anal Calorim 147, 13847–13860 (2022). https://doi.org/10.1007/s10973-022-11708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11708-7

Keywords

Navigation