Skip to main content
Log in

Slip impact on double-diffusion convection of magneto-fourth-grade nanofluids with peristaltic propulsion through inclined asymmetric channel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The significance of double-diffusivity convection and an inclined magnetic field on peristaltic propulsion of fourth-grade nanofluids through an inclined asymmetric channel is the focus of this study. A mathematical model of a fourth-grade nanofluid is presented, by considering a tilted magnetic field and double-diffusivity convection. The highly nonlinear partial differential equations (PDE's) are simplified with the lubrication methodology. Numerical technique is used to solve the coupled and highly nonlinear PDE's. To examine the impact of varying physical characteristics like Brownian motion, thermophoresis, Hartmann number, nanoparticle Grashof number, slip parameters and trapping on flow quantities, numerical and graphical results are provided. It is acquired that when Brownian motion is increased, the pressure gradient drops; however, when the thermophoresis parameter is increased, the pressure gradient boosts. It is also notable that the profile of velocity resembles a parabolic form and maximum velocity retain at channel’s center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

G rF :

Nanoparticle Grashof number

G rc :

Solutal Grashof number

G rt :

Thermal Grashof number

(ρc)f :

Fluid heat capacity

(ρc)p :

Heat capacity of nanoparticle

Pr :

Prandtl number

M :

Hartmann number

N b :

Brownian motion parameter

N t :

Thermophoresis parameter

N CT :

Soret parameter

D s :

Solutal diffusively

Ω:

Nanoparticle volume fraction

T :

Temperature

Re :

Reynolds number

C :

Solutal concentration

Ln :

Nanofluid Lewis number

N TC :

Dufour parameter

Le :

Lewis number

D B :

Brownian diffusion coefficient

D CT :

Soret diffusively

D TC :

Dufour diffusively

D T :

Thermophoretic diffusion coefficient

\({\beta }_\text{T}\) :

Volumetric thermal expansion

\({\rho }_\text{f}\) :

Fluid density

\(\delta\) :

Wave number

\(\Psi\) :

Stream function

\(\xi\) :

Inclination angle of MHD

\(\eta\) :

Inclination angle of channel

\(\theta\) :

Dimensionless temperature

\({\beta }_\text{C}\) :

Volumetric solutal expansion

\({\rho }_{\text{f}_{0}}\) :

Fluid density at T0

\({\rho }_\text{p}\) :

Nanoparticle mass density

\(\gamma\) :

Dimensionless solutal concentration

\(\lambda\) :

Wavelength

\(\mu\) :

Viscosity of fluid

\(\Theta\) :

Nanoparticle volume fraction

\(a,b\) :

Wave amplitudes

\(c\) :

Propagation of velocity

\(d\) :

Channel width

\(g\) :

Acceleration due to gravity

\(k\) :

Thermal conductivity

\(p\) :

Pressure

\(t\) :

Time

\(u\) :

Axial velocity

\(v\) :

Transverse velocity

References

  1. Hariharan P, Seshadri V, Banerjee RK. Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms. Math Comput Modell. 2008;48:998–1017.

    Google Scholar 

  2. Latham TW. Fluid motion in a peristaltic pump, M.Sc. Thesis, MIT, Cambridge 1966.

  3. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. Cambridge Uni Press. 1969;37:799–825.

    Google Scholar 

  4. Mishra M, Rao AR. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z Angew Math Phys (ZAMP). 2003;54:532–50.

    Google Scholar 

  5. Tripathi D, Pandey SK, Das S. Peristaltic transport of a generalized Burgers’ fluid: application to the movement of chyme in small intestine. Acta Astronaut. 2011;69:30–8.

    Google Scholar 

  6. Ijaz N, Riaz A, Zeeshan A, Ellahi R, Sait SM. Buoyancy driven flow with gas-liquid coatings of peristaltic bubbly flow in elastic walls. Coatings. 2020;101:115.

    Google Scholar 

  7. Usha S, Rao AR. Effects of curvature and inertia on the peristaltic transport in a two-fluid system. Int J Eng Sci. 2000;38:1355–75.

    Google Scholar 

  8. Reddy MVS, Mishra M, Sreenadh S, Rao AR. Influence of lateral walls on peristaltic flow in a rectangular duct. J Fluids Eng. 2005;127:824–7.

    Google Scholar 

  9. Nadeem S, Riaz A, Ellahi R. Peristaltic flow of a Jeffrey fluid in a rectangular duct having complaint walls. Chem Ind Chem Eng Q. 2013;19:399–409.

    CAS  Google Scholar 

  10. Abd El-Naby AH, El-Misiery AEM. Effects of an endoscope and generalized Newtonian fluid on peristaltic motion. Appl Math Comput. 2002;128:19–35.

    Google Scholar 

  11. Elmaboud YA. Influence of induced magnetic field on peristaltic flow in an annulus. Commun Nonlinear Sci Numer Simulat. 2012;17:685–98.

    Google Scholar 

  12. Ramesh K, Devakar M. Effects of heat and mass transfer on the peristaltic transport of MHD couple stress fluid through porous medium in a vertical asymmetric channel. J Fluids. 2015;2015:1–19.

    Google Scholar 

  13. Tripathi D, Bég OA. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Proc I Mech E Part H J Eng Med. 2012;226:631–44.

    Google Scholar 

  14. Bhatti MM, Zeeshan A, Tripathi D, Ellahi R. Thermally developed peristaltic propulsion of magnetic solid particles in Biorheological fluids. Indian J Phys. 2018;92:423–30.

    CAS  Google Scholar 

  15. Reddy RH, Kavitha A, Sreenadh S, Saravana R. Effects of induced magnetic field on peristaltic transport of a Carreau fluid in an inclined channel filled with porous material. Int J Mech Mater Eng. 2011;6:240–9.

    Google Scholar 

  16. Kothandapani M, Pushparaj V, Prakash J. Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J King Saud Univ Eng Sci. 2018;30:86–95.

    Google Scholar 

  17. Riaz A, Zeeshan A, Ahmad S, Razaq A, Zubair M. Effects of external magnetic field on Non-newtonian two phase fluid in an annulus with peristaltic pumping. J Magn. 2019;24:1–8.

    Google Scholar 

  18. Abd-Alla AM, Abo-Dahab SM. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J Magn Magn Mater. 2015;374:680–9.

    CAS  Google Scholar 

  19. Munawar S, Saleem N. Second law analysis of ciliary pumping transport in an inclined channel coated with Carreau fluid under a magnetic field. Coatings. 2020;10:240.

    CAS  Google Scholar 

  20. Haider S, Ijaz N, Zeeshan A, Li YZ. Magneto-hydrodynamics of a solid-liquid two-phase fluid in rotating channel due to peristaltic wavy movement. Int J Numer Method H. 2019;30:2501–16.

    Google Scholar 

  21. Choi SUS. Enhancing thermal conductivity of fluid with nanoparticles developments and Applications of non-Newtonian Flow, ASME Fed, 231;66: 99–105.

  22. Bovand M, Rashidi S, Ahmadi G, Esfahani JA. Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow—A two-way coupling of Eulerian-Lagrangian model. Appl Therm Eng. 2016;108:368–77.

    CAS  Google Scholar 

  23. Shehzad N, Zeeshan A, Ellahi R, Rashidi S. Modelling study on internal energy loss due to entropy generation for non-Darcy Poiseuille flow of silver-water nanofluid: an application of purification. Entropy. 2018;20:851.

    CAS  PubMed Central  Google Scholar 

  24. Darbari B, Saman Rashidi S, Esfahani JA. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy. 2016;18:52.

    Google Scholar 

  25. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Trans. 2017;31:218–29.

    CAS  Google Scholar 

  26. Darbari B, Rashidi S, Keshmiri A. Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators. J Therm Anal Calorim. 2020;140:1045–55.

    CAS  Google Scholar 

  27. Ajarostaghi SSM, Shirzad M, Rashidi S, Li LKB. Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts. Energy Sources A Recov Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1841860.

    Article  Google Scholar 

  28. Azadi M, Hosseinirad E, Hormozi F, Rashidi S. Second law analysis for nanofluid flow in mini-channel heat sink with finned surface: a study on fin geometries. J Therm Anal Calorim. 2020;140:1883–95.

    CAS  Google Scholar 

  29. Freidoonimehr N, Rashidi MM, Momenpour MH, Rashidi S. Analytical approximation of heat and mass transfer in MHD non-Newtonian nanofluid flow over a stretching sheet with convective surface boundary conditions. Int J Biomath. 2017;10:1750008.

    Google Scholar 

  30. Akar S, Rashidi S, Esfahani JA, Karimi N. Targeting a channel coating by using magnetic field and magnetic nanofluids. J Therm Anal Calorim. 2019;137:381–8.

    CAS  Google Scholar 

  31. Kothandapani M, Prakash J. Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int J Heat Mass Transf. 2015;8:234–45.

    Google Scholar 

  32. Sucharitha G, Lakshminarayana P, Sandeep N. Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int J Mech Sci. 2017;131:52–62.

    Google Scholar 

  33. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.

    CAS  Google Scholar 

  34. Akbar NS. Metallic nanoparticles analysis for the peristaltic flow in an asymmetric channel With MHD. IEEE Trans Nanotechnol. 2014;13:357–61.

    CAS  Google Scholar 

  35. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138:1311–26.

    CAS  Google Scholar 

  36. Beghein C, Haghighat F, Allard F. Numerical study of double-diffusive natural convection in a square cavity. Int J Heat Mass Tran. 1992;35:833–46.

    CAS  Google Scholar 

  37. Bég OA, Tripathi D. Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nanoengineering model. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2012;225:99–114.

    Google Scholar 

  38. Sharma A, Tripathi D, Sharma RK, Tiwari AK. Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Physica A. 2019;535:122148.

    CAS  Google Scholar 

  39. Asha SK, Sunitha G. Thermal radiation and hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Stud Therm Eng. 2020;17:100560.

    Google Scholar 

  40. Akram S, Razia A, Afzal F. Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch Appl Mech. 2020;90:1583–603.

    Google Scholar 

  41. Alolaiyan H, Riaz A, Razaq A, Saleem N, Zeeshan A, Bhatti MM. Effects of double diffusion convection on Third grade nanofluid through a curved compliant peristaltic channel. Coatings. 2020;10:154.

    CAS  Google Scholar 

  42. Chu WKH, Fang J. Peristaltic transport in a slip flow. Eur Phys J B. 2000;16:543–7.

    CAS  Google Scholar 

  43. Akbar NS, Nadeem S, Hayat T, Hendi A. Peristaltic flow of a nanofluid with slip effects. Meccanica. 2012;47:1283–94.

    Google Scholar 

  44. Abbasi FM, Hayat T, Alsaadi F. Hydromagnetic peristaltic transport of water-based nanofluids with slip effects through an asymmetric channel. Int J Mod Phys B. 2015;29:1550151.

    CAS  Google Scholar 

  45. Mandviwalla X, Archer R. The influence of slip boundary conditions on peristaltic pumping in a rectangular channel. J Fluids Eng. 2008;130:124501.

    Google Scholar 

  46. Akram S, Mekheimer KhS, Elmaboud YA. Particulate suspension slip flow induced by peristaltic waves in a rectangular duct: effect of lateral walls. Alex Eng J. 2018;57:407–14.

    Google Scholar 

  47. Nadeem S, Akbar NS, Hayat T, Obaidat S. Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. Int J Heat Mass Transf. 2012;55:1855–62.

    Google Scholar 

  48. Ellahi R, Hussain F, Ishtiaq F, Hussain A. Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an application to upgrade industrial sieves/filters. Pramana. 2019;93:34.

    Google Scholar 

  49. Riaz A, Khan SUD, Zeeshan A, Khan SU, Hassan M, Muhammad T. Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J Therm Anal Calorim. 2021;143:1997–2009.

    CAS  Google Scholar 

  50. Prakash J, Siva EP, Tripathi D, Beg OA. Thermal slip and radiative heat transfer effects on electroosmotic magneto nanoliquid peristaltic propulsion through a microchannel. Heat Transf Asian Res. 2019;48:2882–908.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number RGP.2/39/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taseer Muhammad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Athar, M., Saeed, K. et al. Slip impact on double-diffusion convection of magneto-fourth-grade nanofluids with peristaltic propulsion through inclined asymmetric channel. J Therm Anal Calorim 147, 8933–8946 (2022). https://doi.org/10.1007/s10973-021-11150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11150-1

Keywords

Navigation