Skip to main content
Log in

A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper takes a different look at the mathematical modeling of the effective thermal conductivity of nanofluids. Most related published experimental-based mathematical models have been analyzed statistically. The sensitivity analysis showed that in the most published models, the role of nanofluids bulk temperature may be ignored. Then, we extracted a lot of data from the models in the valid ranges of variables. The next step was performing statistical analysis of the variances and means of different datasets (data populations). The results showed that changing considerably the nanofluids temperature doesn’t affect considerably the nanofluids thermal conductivity. We introduced a comprehensive, simpler and more accurate correlation neglecting the nanofluids temperature to predict the effective thermal conductivity of nanofluids. Results indicated that the predicted values using the proposed correlation are in a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moradikazerouni A, Afrand M, Alsarraf J, Wongwises S, Asadi A, Nguyen TK. Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method. Int J Heat Mass Transf. 2019;134:1218–26.

    Article  Google Scholar 

  2. Armaghani T, Maghrebi MJ, Chamkha AJ, Al-Mudhaf AF. Forced convection heat transfer of nanofluids in a channel filled with porous media under local thermal non-equilibrium condition with three new models for absorbed heat flux. J Nanofluids. 2017;6(2):362–7.

    Article  Google Scholar 

  3. Asadi A, et al. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason Sonochem. 2019;58:104701.

    Article  CAS  PubMed  Google Scholar 

  4. Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran M-D. Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board. Appl Therm Eng. 2019;150:1078–89.

    Article  CAS  Google Scholar 

  5. Banooni S, Zarea H, Molana M. Thermodynamic and Economic Optimization of Plate Fin Heat Exchangers Using the Bees Algorithm. Heat Transf - Asian Res. 2014;43(5):427–46.

    Article  Google Scholar 

  6. Qashqaei A, Asl RG. Numerical modeling and simulation of copper oxide nanofluids used in compact heat exchangers. Int J Mech Eng. 2015;4(2):1–8.

    Google Scholar 

  7. Yari A, Hosseinzadeh S, Golneshan AA, Ghasemiasl R. Numerical simulation for thermal design of a gas water heater with turbulent combined convection. In: ASME/JSME/KSME 2015 joint fluids engineering conference, 2015; p. V01AT03A006–V01AT03A006.

  8. Esmaeili H, Armaghani T, Abedini A, Pop I. Turbulent combined forced and natural convection of nanofluid in a 3D rectangular channel using two-phase model approach. J Therm Anal Calorim. 2019;135(6):3247–57.

    Article  CAS  Google Scholar 

  9. Rashad AM, Mansour MA, Armaghani T, Chamkha AJ. MHD mixed convection and entropy generation of nanofluid in a lid-driven U-shaped cavity with internal heat and partial slip. Phys Fluids. 2019;31(4):42006.

    Article  Google Scholar 

  10. Armaghani T, Esmaeili H, Mohammadpoor YA, Pop I. MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Heat Mass Transf. 2018;54:1–11.

    Article  Google Scholar 

  11. Armaghani T, Ismael MA, Chamkha AJ, Pop I. Mixed convection and entropy generation of an Ag-water nanofluid in an inclined L-SHAPED CHannel. Energies. 2019;12(6):1150.

    Article  CAS  Google Scholar 

  12. Ghasemiasl R, Hoseinzadeh S, Javadi MA. Numerical analysis of energy storage systems using two phase-change materials with nanoparticles. J Thermophys Heat Transf. 2017;32(2):440–8.

    Article  Google Scholar 

  13. Hoseinzadeh S, Ghasemiasl R, Havaei D, Chamkha AJ. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J Mol Liq. 2018;271:655–60.

    Article  CAS  Google Scholar 

  14. Maxwell JC. Electricity and magnetism. Oxford: Clarendon Press; 1873.

    Google Scholar 

  15. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. United States: N. p., 1995.

  16. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  17. Molana M. A comprehensive review on the nanofluids application in the tubular heat exchangers. Am J Heat Mass Transf. 2016;3(5):352–81.

    CAS  Google Scholar 

  18. Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71.

    Article  Google Scholar 

  19. Alsarraf J, Moradikazerouni A, Shahsavar A, Afrand M, Salehipour H, Tran MD. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys A Stat Mech its Appl. 2019;520:275–88.

    Article  CAS  Google Scholar 

  20. Molana M, Banooni S. Investigation of heat transfer processes involved liquid impingement jets: a review. Braz J Chem Eng. 2013;30(3):413–35.

    Article  CAS  Google Scholar 

  21. Wongcharee K, Chuwattanakul V, Eiamsa-ard S. Influence of CuO/water nanofluid concentration and swirling flow on jet impingement cooling. Int Commun Heat Mass Transf. 2017;88:277–83.

    Article  CAS  Google Scholar 

  22. Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AAAA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16.

    Article  CAS  Google Scholar 

  23. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  24. Jamei M, Ahmadianfar I, Olumegbon IA, Karbasi M, Asadi A. On the assessment of specific heat capacity of nanofluids for solar energy applications: application of Gaussian process regression (GPR) approach. J Energy Storage. 2021;33:102067.

    Article  Google Scholar 

  25. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    Article  CAS  Google Scholar 

  26. Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120(2):1145–9.

    Article  Google Scholar 

  27. Moradikazerouni A, Hajizadeh A, Safaei MR, Afrand M, Yarmand H, Zulkifli NWBM. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys A Stat Mech its Appl. 2019;521:138–45.

    Article  CAS  Google Scholar 

  28. Asadi A, et al. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: a state-of-the-art review. Powder Technol. 2019;352:209–22.

    Article  CAS  Google Scholar 

  29. Alshayji A, Asadi A, Alarifi IM. On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: an experimental study. Powder Technol. 2020;373:397–410.

    Article  CAS  Google Scholar 

  30. Asadi A, Alarifi IM, Foong LK. An experimental study on characterization, stability and dynamic viscosity of CuO–TiO2/water hybrid nanofluid. J Mol Liq. 2020;307:112987.

    Article  CAS  Google Scholar 

  31. Molana M. On the nanofluids application in the automotive radiator to reach the enhanced thermal performance: a review. Am J Heat Mass Transf. 2017;4(4):168–87.

    CAS  Google Scholar 

  32. Kakavand H, Molana M. A numerical study of heat transfer charcteristics of a car radiator involved nanofluids. Heat Transf Asian Res. 2017;47:1–15.

    Google Scholar 

  33. Chamkha AJ, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018;332:287–322.

    Article  CAS  Google Scholar 

  34. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M. “A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2018;343:880–907.

    Article  Google Scholar 

  35. Nitiapiruk P, Mahian O, Dalkilic AS, Wongwises S. Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models. Int Commun Heat Mass Transf. 2013;47:98–104.

    Article  CAS  Google Scholar 

  36. Vo DD, Alsarraf J, Moradikazerouni A, Afrand M, Salehipour H, Qi C. Numerical investigation of γ-AlOOH nano-fluid convection performance in a wavy channel considering various shapes of nanoadditives. Powder Technol. 2019;345:649–57.

    Article  CAS  Google Scholar 

  37. Jamei M, et al. On the specific heat capacity estimation of metal oxide-based nanofluid for energy perspective—a comprehensive assessment of data analysis techniques. Int Commun Heat Mass Transf. 2021;123:105217.

    Article  CAS  Google Scholar 

  38. Zeinali Heris S, Razbani MA, Estellé P, Mahian O. Rheological behavior of zinc-oxide nanolubricants. J Dispers Sci Technol. 2015;36(8):1073–9.

    Article  Google Scholar 

  39. Esfe MH, Afrand M, Yan W-M, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Article  Google Scholar 

  40. Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Article  Google Scholar 

  41. Tripathi D, Bég OA. A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf. 2014;70:61–70.

    Article  CAS  Google Scholar 

  42. Abbas MA, Bai YQ, Rashidi MM, Bhatti MM. Application of drug delivery in Magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel. J Mech Med Biol. 2016;16(04):1650052.

    Article  Google Scholar 

  43. Ghasemi SE, Vatani M, Hatami M, Ganji DD. Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems. J Mol Liq. 2016;215:88–97.

    Article  CAS  Google Scholar 

  44. Esfe MH, Sarlak MR. Experimental investigation of switchable behavior of CuO-MWCNT (85%–15%)/10W-40 hybrid nano-lubricants for applications in internal combustion engines. J Mol Liq. 2017;242:326–35.

    Article  Google Scholar 

  45. Gan Y, Lim YS, Qiao L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust Flame. 2012;159(4):1732–40.

    Article  CAS  Google Scholar 

  46. Sabet Sarvestany N, Farzad A, Ebrahimnia-Bajestan E, Mir M. Effects of magnetic nanofluid fuel combustion on the performance and emission characteristics. J Dispers Sci Technol. 2014;35(12):1745–50.

    Article  CAS  Google Scholar 

  47. Kumar S, Prasad SK, Banerjee J. Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model. Appl Math Model. 2010;34(3):573–92.

    Article  Google Scholar 

  48. Liu D, Yu L. Single-phase thermal transport of nanofluids in a minichannel. J Heat Transf. 2011;133(3):31009.

    Article  Google Scholar 

  49. Ismael MA, Armaghani T, Chamkha AJ. Mixed convection and entropy generation in a lid-driven cavity filled with a hybrid nanofluid and heated by a triangular solid. Heat Transf Res. 2018;49(17):1645–65.

    Article  Google Scholar 

  50. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28(2):211–9.

    Article  CAS  Google Scholar 

  51. Kalteh M, Abbassi A, Saffar-Avval M, Harting J. Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J heat fluid flow. 2011;32(1):107–16.

    Article  CAS  Google Scholar 

  52. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body. Int Commun Heat Mass Transf. 2020;110:104442.

    Article  Google Scholar 

  53. Chamkha AJ, Jomardiani G, Ismael MA, Ghasemiasl R, Armaghani T. Thermal and entropy analysis in L-shaped non-Darcian porous cavity saturated with nanofluids using Buongiorno model: comparative study. Math Methods Appl Sci. 2020;1–16. https://doi.org/10.1002/mma.6797.

  54. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  55. Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys. 1962;33(10):3125–31.

    Article  CAS  Google Scholar 

  56. Jeffrey DJ. Conduction through a random suspension of spheres. Proc R Soc Lond A Math Phys Sci. 1973;335(1602):355–67.

    Google Scholar 

  57. Turian RM, Sung D-J, Hsu F-L. Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel. 1991;70(10):1157–72.

    Article  CAS  Google Scholar 

  58. Aberoumand S, Jafarimoghaddam A, Moravej M, Aberoumand H, Javaherdeh K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl Therm Eng. 2016;101:362–72.

    Article  CAS  Google Scholar 

  59. Pakdaman MF, Akhavan-Behabadi MA, Razi P. An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Therm fluid Sci. 2012;40:103–11.

    Article  Google Scholar 

  60. Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S. Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int Commun Heat Mass Transf. 2016;70:66–74.

    Article  CAS  Google Scholar 

  61. Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanoparticle Res. 2010;12(3):1015–31.

    Article  CAS  Google Scholar 

  62. Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99(8):84314.

    Article  Google Scholar 

  63. Esfe MH, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transf. 2015;67:173–5.

    Article  Google Scholar 

  64. Esfe MH, Karimipour A, Yan W-M, Akbari M, Safaei MR, Dahari M. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf. 2015;88:728–34.

    Article  Google Scholar 

  65. Esfe MH, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  Google Scholar 

  66. Esfe MH, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124(1):455–60.

    Article  Google Scholar 

  67. Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transf. 2016;76:171–7.

    Article  Google Scholar 

  68. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    Article  CAS  Google Scholar 

  69. Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int J Heat Mass Transf. 2018;124:742–51.

    Article  CAS  Google Scholar 

  70. Karimi A, Afghahi SSS, Shariatmadar H, Ashjaee M. Experimental investigation on thermal conductivity of MFe2O4 (M= Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim Acta. 2014;598:59–67.

    Article  CAS  Google Scholar 

  71. Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transf. 2018;92:90–9.

    Article  CAS  Google Scholar 

  72. Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: eco-friendly production of nanoparticles. J Clean Prod. 2019;206:1089–100.

    Article  CAS  Google Scholar 

  73. Keyvani M, Afrand M, Toghraie D, Reiszadeh M. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. J Mol Liq. 2018;266:211–7.

    Article  CAS  Google Scholar 

  74. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our special thanks of gratitude to Dr. Mohammad Reza Khaji, Dr. Arash Nobari and Dr. Abbas Biglar for their constructive help and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Armaghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1248 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molana, M., Ghasemiasl, R. & Armaghani, T. A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models. J Therm Anal Calorim 147, 4553–4577 (2022). https://doi.org/10.1007/s10973-021-10836-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10836-w

Keywords

Navigation