Skip to main content
Log in

A promising approach to design thermosensitive in situ gel based on solid dispersions of desloratadine with Kolliphor® 188 and Pluronic® F127

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Desloratadine (DSL) is an anti-allergic agent but its efficacy is limited with its low dissolution rate and aqueous solubility results in restricted bioavailability. The current study examines the probability of using Kolliphor® 188 (K188) and Pluronic® F127 (P127) as solubility improving agents of DSL that can be used to formulate in situ gel systems intended for nasal application in order to extend the contact time with nasal cavity and thereby maintain uptake of the drug. Solid dispersions (SDs) having various mass ratios of polymers and DSL were formulated using solvent-lyophilization method. SDs were evaluated for morphology, crystallinity, thermal behavior, solubility and dissolution rate to assess the efficiency of the polymers as solubility modifiers. SDs prepared with K188 and P127 demonstrated soft and fluffy structure, smaller particle size and narrower size distribution. DSC, FT-IR, 1H-NMR spectra confirmed the constitution of SDs and supplied information about the state of DSL in polymeric network. As the solubility of DSL was determined as 0.106 ± 0.009, all SDs prepared with K188 and P127 displayed enhanced solubility from 42- to 115-fold. Drug dissolution rate of DSL for all SDs was remarkably higher than of the pure DSL. K1 and P1 formulations were selected as optimum for designing nasal in situ gel systems. Gels designed by cold method were determined to show modified release fitted best to Peppas-Sahlin model. The transparent gels designed using sufficient quantities of polymers can be reducing the mucociliary clearance appear to be a feasible alternative to commercially available DSL tablets..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Galgatte UC, Kumbhar AB, Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2014;21(1):62–73.

    CAS  PubMed  Google Scholar 

  2. Teng LH, Kumar JR, Leng L, Mvra MS, Kanagambikai R. Nanoparticle loaded thermosensitive nasal in-situ gels for delivery of loratadine: in- vitro & in-vivo evaluation studies. Rapp De Pharm. 2015;1(1):17–27.

    CAS  Google Scholar 

  3. Barakat SS, Nasr M, Ahmed RF, Badawy SS, Mansour S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci Rep. 2017;7:9910.

    PubMed  PubMed Central  Google Scholar 

  4. Singh AK, Singh A, Satheesh Madhav NV. Nasal cavity: a promising transmucosal platform for drug delivery and research approaches from nasal to brain targeting. J Drug Deliv Ther. 2012;2:22–33.

    CAS  Google Scholar 

  5. Majithiya RJ, Ghosh PK, Umrethia ML, Murthy RS. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS Pharmscitech. 2006;7(3):E80–6.

    PubMed Central  Google Scholar 

  6. Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today. 2016;21(1):157–66.

    CAS  PubMed  Google Scholar 

  7. Nirmal HB, Bakliwal SR, Pawar SP. In-situ gel: new trends in controlled and sustained drug delivery system. Int J Pharm. 2010;2:1398–408.

    CAS  Google Scholar 

  8. Attwood D, Collett JH, Tait CJ. The micellar properties of the poly (oxyethylene)-poly (oxypropylene) copolymer Pluronic F127 in water and electrolyte solution. Int J Pharm. 1985;26(1–2):25–33.

    CAS  Google Scholar 

  9. Balakrishnan P, Park EK, Song CK, Ko HJ, Hahn TW, Song KW, Cho HJ. Carbopol-incorporated thermoreversible gel for intranasal drug delivery. Molecules. 2015;20(3):4124–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaki NM, Awad GA, Mortada ND, ElHady SSA. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci. 2007;32(4–5):296–307.

    CAS  PubMed  Google Scholar 

  11. Li C, Li C, Liu Z, Li Q, Yan X, Liu Y, Lu W. Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. Int J Pharm. 2014;474(1–2):123–33.

    CAS  PubMed  Google Scholar 

  12. Pund S, Rasve G, Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur J Pharm Sci. 2013;48(1–2):195–201.

    CAS  PubMed  Google Scholar 

  13. Kulkarni JA, Avachat AM. Pharmacodynamic and pharmacokinetic investigation of cyclodextrin-mediated asenapine maleate in situ nasal gel for improved bioavailability. Drug Dev Ind Pharm. 2016;43(2):234–45.

    PubMed  Google Scholar 

  14. Yurtdaş G, Demirel M, Genç L. Inclusion complexes of fluconazole with β-cyclodextrin: physicochemical characterization and in vitro evaluation of its formulation. J Incl Phenom Macrocycl Chem. 2011;70:429–35.

    Google Scholar 

  15. Karolewicz B, Gajda M, Owezarek A, Pluta J, Gorniak A. Physicochemical and dissolution studies of simvastatin solid dispersions with Pluronic F127. Pharmazie. 2014;69:589594.

    Google Scholar 

  16. Ramadhani N, Shabir M, McConville C. Preparation and characterisation of Kolliphor® P 188 and P 237 solid dispersion oral tablets containing the poorly water soluble drug disulfiram. Int J Pharm Sci. 2014;475:514–22.

    CAS  Google Scholar 

  17. Ali W, Williams AC, Rawlinson CF. Stochiometrically governed molecular interactions in drug:poloxamer solid dispersions. Int J Pharm. 2010;391:162–8.

    CAS  PubMed  Google Scholar 

  18. Papageorgiou GZ, Bikiaris D, Kanaze FI, Karavas E, Stergiou A, Georgarakis E. Tailoring the release rates of fluconazole using solid dispersions in polymer blends. Drug Dev Ind Pharm. 2008;34(3):336–46.

    CAS  PubMed  Google Scholar 

  19. Medarevic DP, Kachrimanis K, Mitric M, Djuris J, Djuric Z, Ibric S. Dissolution enhancement and physicochemical characterization of carbamazepine-poloxamer solid disperisons. Pharm Dev Tech. 2016;21(3):268–76.

    CAS  Google Scholar 

  20. Sankari T, Al-Hariri S. Preparation and characterization of cefuroxime axetil solid dispersions using poloxamer 188. Braz J Pharm Sci. 2018;54(4):e17644.

    Google Scholar 

  21. Newa M, Bhandari KH, Li DX, Kwon TH, Kim JA, Yoo BK, Woo JS, Lyoo WS, Yong CS, Choi HG. Preparation, characterization and in vivo evaluation of ibuprofen binary solid dispersions with poloxamer 188. Int J Pharm Sci. 2007;343:228–37.

    CAS  Google Scholar 

  22. Karolewicz B, Gajda M, Gorniak A, Owezarek A, Mucha I. Pluronic F127 as a suitable carrier for preparing the imatinib base solid dispersions and its potential in development of a modified release dosage forms. J Therm Anal Calorim. 2017;130:383–90.

    CAS  Google Scholar 

  23. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN pharmaceutics. 2012;Article ID 195727.

  24. Vo CLN, Park C, Lee BJ. Current trends and future perspectives of soli dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85:799–813.

    CAS  PubMed  Google Scholar 

  25. Kolasinac N, Kachrimanis K, Homšek I, Grujić B, Đurić Z, Ibrić S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int J Pharm. 2012;436(1–2):161–70.

    CAS  PubMed  Google Scholar 

  26. Ainurofiq A, Mauludin R, Mudhakir D, Soewandhi SN. Synthesis, characterization, and stability study of desloratadine multicomponent crystal formation. Res Pharm Sci. 2018;13(2):93.

    PubMed  PubMed Central  Google Scholar 

  27. Monroe EW. Desloratadine for the treatment of chronic urticaria. Skin Therapy Lett. 2002;7(8):1–6.

    CAS  PubMed  Google Scholar 

  28. Popović G, Čakar M, Agbaba D. Acid–base equilibria and solubility of loratadine and desloratadine in water and micellar media. J Pharm Biomed Anal. 2009;49(1):42–7.

    PubMed  Google Scholar 

  29. Ur-Rehman T, Tavelin S, Grobner G. Chitosan in situ gelation for improved drug loading and retention in Poloxamer 407 gels. Int J Pharm. 2011;409:19–29.

    CAS  PubMed  Google Scholar 

  30. Üstündağ-Okur N, Yoltaş A, Yozgatlı V. Development and characterization of voriconazole loaded in situ gel formulations for ophthalmic application. Turk J Pharm Sci. 2016;13(3):311–7.

    Google Scholar 

  31. Yurtdaş-Kırımlıoğlu G, Menceloğlu Y, Erol K, Yazan Y. In vitro/in vivo evaluation of gamma-aminobutyric acid-loaded N, N-dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. J Microencapsul. 2016;33(7):625–35.

    PubMed  Google Scholar 

  32. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add in program for modelling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–71.

    PubMed  PubMed Central  Google Scholar 

  33. Park J, Cho W, Cha KH, Ahn J, Han K, Hwang SJ. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int J Pharm. 2013;441(1–2):50–5.

    CAS  PubMed  Google Scholar 

  34. Yurtdaş-Kırımlıoğlu G, Görgülü Ş, Berkman MS. Novel approaches to cancer therapy with ibuprofen-loaded Eudragit® RS 100 and/or octadecylamine-modified PLGA nanoparticles by assessment of their effects on apoptosis. Drug Dev Ind Pharm. 2020;46(7):1133–49.

    PubMed  Google Scholar 

  35. Wiswaja M, Bhikshapathi DVRN. Improvement of solubility and dissolution of rilpivirine solid dispersions by solvent evaporation technique and novel carriers. Int J Pharm Sci Nanotech. 2018;11(4):4177–84.

    Google Scholar 

  36. Dahlberg C, Millqvist-Fureby A, Schuleit M, Furo I. Relationships between solid dispersion preparation process, particle size and drug release—An NMR and NMR microimaging study. Eur Pharm Biopharm. 2010;76:311–9.

    CAS  Google Scholar 

  37. Zheng K, Lin X, Capece M, Kunnath K, Chen L, Dave RN. Effect of particle size and polymer load, ng on drug dissolution behavior of amorphous griseofulvin powder. J Pharm Sci. 2019;108:234–42.

    CAS  PubMed  Google Scholar 

  38. Ganesan P, Sondararajan R, Shanmugam U, Ramu V. Development, characterization and solubility enhancement of comparative dissolution study of second generation of solid dispersions and microspheres for poorly water soluble drug. Asian J Pharm Sci. 2015;10:433–41.

    Google Scholar 

  39. Sun DD, Lee PI. Evolution of supersaturation of amorphous pharmaceuticals: the effect of rate of supersaturation generation. Mol Pharm. 2013;10:4330–46.

    CAS  PubMed  Google Scholar 

  40. He X, Pei L, Tong HHY, Zheng Y. Comparison of spray freeze drying and the solvent evaporation method for preparing solid dispersions of baicalein with Pluronic F68 to improve dissolution and oral bioavailability. AAPS PharmSciTech. 2011;12(1):104–13.

    CAS  PubMed  Google Scholar 

  41. Ha ES, Choo GH, Baek IH, Kim MS. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical antisolvent process. Molecules. 2014;19:20325–39.

    PubMed  PubMed Central  Google Scholar 

  42. Noyes A, Whitney W. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–4.

    Google Scholar 

  43. Yurtdaş-Kırımlıoğlu G. Host-guest inclusion complex of desloratadine with 2-(hydroxy)propyl-β-cyclodextrin (HP-β-CD): Preparation, binding behaviors and dissolution properties. J Pharm Res. 2020;24(5):693–707.

    Google Scholar 

  44. Yurtdaş-Kırımlıoğlu G. A systematic evaluation of formulation parameters on the characterization biodegradable PLGA-based nanoparticles for ophthalmic application. Lat Am J Pharm. 2019;38(11):2131–42.

    Google Scholar 

  45. Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26:139–51.

    CAS  PubMed  Google Scholar 

  46. Nepal RP, Han HK, Choi HK. Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int J Pharm. 2010;383:147–53.

    CAS  PubMed  Google Scholar 

  47. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    CAS  PubMed  Google Scholar 

  48. Yang M, Wang P, Huang CY, Ku MS, Liu H, Gogos C. Solid dispersion of acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing. Int J Pharm. 2010;395:53–61.

    CAS  PubMed  Google Scholar 

  49. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–44.

    CAS  PubMed  Google Scholar 

  50. Yurtdaş-Kırımlıoğlu G, Özer S, Büyükköroğlu G, Yazan Y. Moxifloxacin hydrochloride-loaded Eudragit® RL 100 and Kollidon® SR based nanoparticles: Formulation, in vitro characterization and cytotoxicity. Comb Chem High Throughput Screen. 2020. https://doi.org/10.2174/1386207323666200428091945.

    Article  Google Scholar 

  51. Karolewicz B, Nartowski K, Pluta J, Górniak A. Physicochemical characterization and dissolution studies of acyclovir solid dispersions with Pluronic F127 prepared by the kneading method. Acta Pharm. 2016;66(1):119–28.

    CAS  PubMed  Google Scholar 

  52. Etman MA, Gamal M, Nada AH, Shams-Eldeen MA. Formulation of desloratadine oral disintegrating tablets. J Appl Pharm. 2014;4(11):54–61.

    Google Scholar 

  53. Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013;3(1):29–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech. 2010;11(2):518–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yurtdaş-Kırımlıoğlu G, Görgülü Ş. Design and characterization of montelukast sodium loaded Kollidon SR nanoparticles and evaluation of release kinetics and cytotoxicity potential. Lat Am J Pharm. 2019;38(7):1350–60.

    Google Scholar 

  56. Ali SM, Upadhyay SK, Maheshwari A. NMR spectroscopic study of the inclusion complex of desloratadine with β-cyclodextrin in solution. J Incl Phenom Macrocycl Chem. 2007;59:351–5.

    CAS  Google Scholar 

  57. Gyulai G, Magyar A, Rohonczy J, Orosz J, Yamasaki M, Bősze S, Kiss É. Preparation and characterization of cationic Pluronic for surface modification and functionalization of polymeric drug delivery nanoparticles. Express Polym Lett. 2016;10(3):216–24.

    CAS  Google Scholar 

  58. Yurtdaş-Kırımlıoğlu G, Özer S, Büyükköroğlu G, Yazan Y. Formulation and in vitro evaluation of moxifloxacin hydrochloride-loaded polymeric nanoparticles for ocular application. Lat Am J Pharm. 2018;37(9):1850–62.

    Google Scholar 

  59. Diaz DA, Colgan ST, Langer CS, Bandi NT, Likar MD, Alstine LV. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? AAPS Journal. 2016;18(1):15–22.

    Google Scholar 

  60. Fusco S, Borzacchiello A, Netti PA. Perspectives on: PEO-PPOPEO triblock copolymers and their biomedical applications. J Bioact Compat Pol. 2006;21:149–64.

    CAS  Google Scholar 

  61. Almeida M, Magalhães M, Veiga F, Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure, and therapeutic applications in cancer. J Polym Res. 2018;25(1):31.

    Google Scholar 

  62. Faisal Ali S, Joshi M, Akhtar N, Sharma V, Pathak K. Combinational approach using solid dispersion and semi-solid matrix technology to enhance in vitro dissolution of telmisartan. Pharm Biomed Res. 2016;2(1):23–35.

    Google Scholar 

  63. FDA, Guidance for Industry Dissolution Testing of Immediate Release Solid Oral Dosage Forms. 2020. https://www.fda.gov/media/70936/download. Accessed 29 Feb 2020.

  64. Abdel-Bary GA, Abdel-Reheem AY, Boseila AA. Preparation and characterization of thermosensitive mucoadhesive in-situ gels for nasal delivery of ondansetron hydrochloride. Al-Azhar J Pharm Sci. 2014;50(2):191–207.

    Google Scholar 

  65. Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci. 2018;114:199–209.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank to Neutec Pharma for supplying the active substance, Exp.Chem. Serkan Levent for his assistance in FT-IR and 1H-NMR analyses and Management of BİBAM (Anadolu University) for providing an opportunity in performing SEM and BET analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülsel Yurtdaş-Kırımlıoğlu.

Ethics declarations

Conflict of interest

The author declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurtdaş-Kırımlıoğlu, G. A promising approach to design thermosensitive in situ gel based on solid dispersions of desloratadine with Kolliphor® 188 and Pluronic® F127. J Therm Anal Calorim 147, 1307–1327 (2022). https://doi.org/10.1007/s10973-020-10460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10460-0

Keywords

Navigation