Skip to main content
Log in

Numerical analysis on flow and performance characteristics of a small-scale solar updraft tower (SUT) with horizontal absorber plate and collector glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical analysis has been performed to examine and assess the flow and performance characteristics of the solar updraft tower (SUT) power plant. A realistic domain (geometry and mesh) of the flow model was generated and simulations were run with the help of ANSYS FLUENT 16.0 CFD package. A turbulent, realizable (kε) and discrete ordinates radiation techniques were taken into consideration to solve the governing equation. The maximum air velocity of 3.27 m s−1 was noticed at 200 mm above the chimney base (CB). The mean velocity at CB was 1.8 m s−1. The highest air temperature of the absorber plate was 323 K, and it was at the centre of the absorber plate. The average air temperature inside the setup was 306.7 K. The power generated from the plant, chimney efficiency and overall efficiency of the SUT setup were evaluated to be 0.38 W, 0.018% and 0.005%, respectively. 24% velocity increase and 70% power output increase were noticed when solar flux increased from 650 to 1150 W m−2. Exergy analysis was performed. The results were compared with existing studies and were found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Absorption (m−1)

A :

Cross-sectional area (m2)

C :

Coefficient

C1, C2, C3 :

Constant for kε model

C P :

Specific heat of air (J kg−1 K−1)

CB:

Chimney base

CFD:

Computational fluid dynamics

D :

Diameter

DO:

Discrete ordinates

FVM:

Finite volume method

g :

Acceleration due to gravity (m s−2)

H :

Height (or) collector inlet gap (m)

I :

Solar intensity (W m−2)

k :

Turbulent kinetic energy (m2 s−2)

P :

Power output (W)

Q :

Volumetric flow rate of air (m3 s−1)

\(\vec{r}\) :

Position vector

r :

Radial coordinate

Ra:

Rayleigh number

RTE:

Radiative transfer equation

\(\vec{s}\) :

Direction vector

SUT:

Solar updraft tower

T :

Temperature (K)

u, v, w :

Velocity components (m s−1)

z :

Axial coordinate

α :

Thermal diffusivity (m2 s−1)

β :

Coefficient of thermal expansion (K−1)

ε :

Rate of dissipation of turbulent energy (m2 s−3)

μ t :

Turbulent viscosity (m2 s−1)

ΔT :

Temperature difference (K)

Δp :

Relative total pressure (Pa)

υ :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (Pa s)

ϕ :

Phase function (sr−1)

dΩ′:

Solid angle (sr)

λ :

Wave length (m)

η :

Efficiency (%)

σ s :

Scattering coefficient

σ :

Stephen Boltzmann constant

δ k :

Turbulent Prandtl number for ‘k

δ ε :

Turbulent Prandtl number for ‘ε

a :

Absorption

b :

Black body

c :

Collector

ch:

Chimney

h :

Hot air

t :

Turbulent

0:

Reference

References

  1. Najmi M, Nazari A, Mansouri H, Zahedi G. Feasibility study on optimization of a typical solar chimney power plant. Heat Mass Transf. 2012;48:475–85. https://doi.org/10.1007/s00231-011-0894-5.

    Article  Google Scholar 

  2. Zhou X, Yang J, Xiao B, Hou G. Experimental study of temperature field in a solar chimney power setup. Appl Therm Eng. 2007;27:2044–50. https://doi.org/10.1016/j.applthermaleng.2006.12.007.

    Article  Google Scholar 

  3. Kasaeian AB, Heidari E, Nasirivatan SH. Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant. Renew Sustain Energy Rev. 2011;15:5202–6. https://doi.org/10.1016/j.rser.2011.04.019.

    Article  Google Scholar 

  4. Kasaeian A, Ghalamchi M, Ghalamchi M. Simulation and optimization of geometric parameters of a solar chimney in Tehran. Energy Convers Manag. 2014;83:28–34. https://doi.org/10.1016/j.enconman.2014.03.042.

    Article  Google Scholar 

  5. Gholamalizade E, Chung JD. Analysis of fluid flow and heat transfer on a solar updraft tower power plant coupled with a wind turbine using computational fluid dynamics. Appl Therm Eng. 2017;126:548–58. https://doi.org/10.1016/j.applthermaleng.2017.07.192.

    Article  Google Scholar 

  6. Ayadi A, Driss Z, Abdullah B, Abid MS. Experimental and numerical study of the impact of the collector roof inclination on the performance of a solar chimney power plant. Energy Build. 2017;139:263–76. https://doi.org/10.1016/j.enbuild.2017.01.047.

    Article  Google Scholar 

  7. Kalash S, Naimeh W, Ajib S. Experimental investigation of the solar collector temperature field of a sloped solar updraft power plant prototype. Sol Energy. 2013;98:70–7. https://doi.org/10.1016/j.solener.2013.05.025.

    Article  Google Scholar 

  8. Ramakrishna B, Chandramohan VP, Kirankumar K. Performance parameter evaluation, materials selection, solar radiation with energy losses, energy storage and turbine design procedure for a pilot scale solar updraft tower. Energy Convers Manag. 2017;150:451–62. https://doi.org/10.1016/j.enconman.2017.08.043.

    Article  Google Scholar 

  9. Ramakrishna B, Chandramohan VP, Kirankumar K. Optimized design and performance parameters for wind turbine blades of a solar updraft tower (SUT) plant using theories of Schmitz and aerodynamics Forces. Sustain Energy Technol Assess. 2018;30:192–200. https://doi.org/10.1016/j.seta.2018.10.001.

    Article  Google Scholar 

  10. Sudhakar P, Cheralathan M. Thermal performance enhancement of solar air collector using a novel V-groove absorber plate with pin fins for drying agricultural products: an experimental study. J Therm Anal Calorim. 2019;140:2397–408. https://doi.org/10.1007/s10973-019-08952-9.

    Article  CAS  Google Scholar 

  11. Kasaeian A, Mahmoudi AR, Astaraei FR, Hejab A. 3D simulation of solar chimney power plant considering turbine blades. Energy Convers Manag. 2017;147:55–65. https://doi.org/10.1016/j.enconman.2017.05.029.

    Article  Google Scholar 

  12. Yaswanthkumar A, Chandramohan VP. Numerical analysis of flow parameters on solar updraft tower (SUT) with and without thermal energy storage (TES) system. J Therm Anal Calorim. 2018;136(1):331–43. https://doi.org/10.1007/s10973-018-7756-z.

    Article  CAS  Google Scholar 

  13. Cottam PJ, Duffor P, Lindstrand P, Fromme P. Effect of canopy profile on solar thermal chimney performance. Sol Energy. 2016;129:286–96. https://doi.org/10.1016/j.solener.2016.01.052.

    Article  Google Scholar 

  14. Petela R. Thermodynamic study of a simplified model of the solar chimney power plant. Sol Energy. 2008;83(1):94–107. https://doi.org/10.1016/j.solener.2008.07.001.

    Article  Google Scholar 

  15. Das P, Chandramohan VP. Effect of chimney height and collector roof angle on flow parameters of solar updraft tower (SUT) plant. J Therm Anal Calorim. 2018;136:133–45. https://doi.org/10.1007/s10973-018-7749-y.

    Article  CAS  Google Scholar 

  16. Nasirivatan S, Kasaeian A, Ghalamchi M, Ghalamchi M. Performance optimization of solar chimney power plant using electric/corona wind. J Electrost. 2015;78:22–30. https://doi.org/10.1016/j.elstat.2015.09.007.

    Article  Google Scholar 

  17. Koonsrisuk A, Chitsomboon T. Effects of flow area changes on the potential of solar chimney power plants. Energy. 2013;51:400–6. https://doi.org/10.1016/j.energy.2012.12.051.

    Article  Google Scholar 

  18. Koonsrisuk A, Lorente S, Bejan A. Constructal solar chimney configuration. Int J Heat Mass Transf. 2010;53(1–3):327–33. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.026.

    Article  Google Scholar 

  19. Arzpeyma M, Mekhilef S, Newaz KMS, Horan B, Seyedmahmoudian M, Akram N, Stojcevski A. Solar chimney power plant and its correlation with ambient wind effect. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09065-z.

    Article  Google Scholar 

  20. Nasraoui H, Driss Z, Kchaou H. Effect of the chimney design on the thermal characteristics in solar chimney power plant. J Therm Anal Calorim. 2019;140:2721–32. https://doi.org/10.1007/s10973-019-09037-3.

    Article  CAS  Google Scholar 

  21. Yaswanthkumar A, Chandramohan VP. Influence of thermal energy storage system on flow and performance parameters of solar updraft tower power plant: a three dimensional numerical analysis. J Clean Prod. 2019;207(10):136–52. https://doi.org/10.1016/j.jclepro.2018.09.248.

    Article  Google Scholar 

  22. Kesavan S, Arjunan TV, Vijayan S. Thermodynamic analysis of a triple pass solar dryer for drying potato slices. J Therm Anal Calorim. 2018;136:159–71. https://doi.org/10.1007/s10973-018-7747-0.

    Article  CAS  Google Scholar 

  23. Shahdost BM, Jokar MA, Astaraei FR, Ahmadi MH. Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery). J Therm Anal Calorim. 2019;137:2081–97. https://doi.org/10.1007/s10973-019-08135-6.

    Article  CAS  Google Scholar 

  24. Ramakrishna B, Chandramohan VP, Kiran KK. A complete design data and performance parameter evaluation of a pilot scale solar updraft tower. Heat Transf Eng. 2019;41(6–7):562–75. https://doi.org/10.1080/01457632.2018.1546811.

    Article  CAS  Google Scholar 

  25. Ming T, deRitcher RK, Meng F, Pan Y, Liu W. Chimney shape numerical study for solar chimney power generating systems. Int J Energy Res. 2011;37(4):310–22. https://doi.org/10.1002/er.1910.

    Article  Google Scholar 

  26. Nasraoui H, Driss Z, Ayadi A, Bouabidi A, Kchaou H. Numerical and experimental study of the impact of conical chimney angle on the thermodynamic characteristics of a solar chimney power plant. J Proc Mech Eng. 2019;233(5):1185–99. https://doi.org/10.1177/0954408919859160.

    Article  Google Scholar 

  27. Abhay L, Chandramohan VP, Raju VRK. Design, development and performance of indirect type solar dryer for banana drying. Energy Proc. 2017;109:409–16. https://doi.org/10.1016/j.egypro.2017.03.041.

    Article  Google Scholar 

  28. Neeraj M, Krishan K, Manoj K. Thermal analysis of solar updraft tower by using different absorbers with convergent chimney. Environ Dev Sustain. 2018;21:1251–69. https://doi.org/10.1007/s10668-018-0087-1.

    Article  Google Scholar 

  29. Fadaei N, Kasaeian A, Akbarzadeh A, Hashemabadi SH. Experimental investigation of solar chimney with phase change material (PCM). Renew Energy. 2018;123:26–35. https://doi.org/10.1016/j.renene.2018.01.122.

    Article  CAS  Google Scholar 

  30. Ghalamchi M, Kasaeian A, Ghalamchi M, Mirahosseeini AH. An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renew Energy. 2016;91:477–83. https://doi.org/10.1016/j.renene.2016.01.091.

    Article  Google Scholar 

  31. Ramakrishna B, Chandramohan VP, Kirankumar K. Development of a small scale plant for a solar chimney power plant (SCPP): a detailed fabrication procedure, experiments and performance parameters evaluation. Renew Energy. 2020;148:247–60. https://doi.org/10.1016/j.renene.2019.12.001.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by (1) Science & Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi—110 070, India, Grant No. File No. EEQ/2016/000111 and (2) Centre of Excellence (CoE) under TEQIP—II, National Institute of Technology Warangal, Warangal, India, Ref. No: TEQIP-II/NITW/CoE/2016. The authors also acknowledge the support received by way of proof reading from Dr. M.R. Vishwanathan, Assistant Professor and Head, Humanities and Social Sciences Department, NIT Warangal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Chandramohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balijepalli, R., Chandramohan, V.P., Kirankumar, K. et al. Numerical analysis on flow and performance characteristics of a small-scale solar updraft tower (SUT) with horizontal absorber plate and collector glass. J Therm Anal Calorim 141, 2463–2474 (2020). https://doi.org/10.1007/s10973-020-10057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10057-7

Keywords

Navigation