Skip to main content
Log in

Effects of elevated pool fire in a naturally ventilated compartment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents an experimental analysis of fire behavior due to elevated fuel pan with diesel in a fixed ventilated compartment of size 4 m (height) × 4 m (length) × 4 m (width) having door opening of 2 m (Hd) × 1 m (W). A reasonably large pool size of diameter 0.8 m is used in experiments so that the results may be useful for industrial fire hazard analysis. The variable parameter, taken as fire source height ‘h’ is from the floor that is 0.3 m, 0.6 m, 0.9 m, 1.2 m, 1.5 m and 1.8 m. During experimentation, it is observed that variation in pan height significantly affects the mass loss rate (MLR), heat release rate (HRR), flame behavior, smoke layer height, doorway mass flow and global equivalence ratio (GER). In case of higher elevated fire, HRR decreased drastically, one-fourth of maximum HRR value obtained in case of lower elevation of fire source. Lowest elevated pool fire shows good agreement for MLR and HRR with other experiment performed in an open space, i.e., well ventilated condition. For a significant elevated fire, the average fuel mass loss rate, flame temperature, smoke layer height, doorway mass flow rate and exit velocity were lower. With respect to above parameters, fire scenario inside the compartment seems to be less hazardous in case of higher elevated fire. A completely different trend has been found for the variation of GER with respect to MLR in current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang S, Ni X, Zhao M, Zhang R, Zhang H. Experimental study on the charecteristics of wood crib fire in a confined space with different ventilation conditions. J Therm Anal Calorim. 2015;120:1383–8.

    Article  CAS  Google Scholar 

  2. Drysdale D. Introduction to fire dynamics. New York: Willy; 1997.

    Google Scholar 

  3. Yii EH, Buchanan AH, Fleischmann CM. Simulating the effects of fuel type and geometry on post-flashover fire temperatures. Fire Saf J. 2006;41:62–75.

    Article  Google Scholar 

  4. Chaudhary A, Gupta A, Kumar S, Kumar R. Thermal environment induced by jatropha oil pool fire in a compartment. J Therm Anal Calorim. 2017;127(3):2397–415.

    Article  CAS  Google Scholar 

  5. Leite RM, Centeno FR. Effect of tank diameter on thermal behavior of gasoline and diesel storage tank fires. J Hazard Mater. 2018;342:544–52.

    Article  CAS  Google Scholar 

  6. Chen L, Tang F. Experimental study on the longitudinal temperature decay beneath ceiling in ventilated tunnel fires. J Therm Anal Calorim. 2020;139:3179–84.

    Article  CAS  Google Scholar 

  7. Weng WG, Fan WC, Yang LZ, Song H, Deng ZH, Qin J, Liao GX. Experimental study of back-draft in a compartment with openings of different geometries. Combust Flame. 2003;132:709–14.

    Article  CAS  Google Scholar 

  8. Tao Z, Yang R, Li C, Yao Y, Zhu P, Zhang H. Experimental study on liquid fire behavior at different effective ceiling heights in full-size simulated cargo compartment. J Therm Anal Calorim. 2018;133:1617–26.

    Article  CAS  Google Scholar 

  9. Merci B, Vandevelde P. Experimental study of natural roof ventilation in a full-scale enclosure fire tests in a small compartment. Fire Saf J. 2007;42:523–35.

    Article  Google Scholar 

  10. Liu J, Chen M, Lin X, et al. Impacts of ceiling height on the combustion behaviors of pool fires beneath a ceiling. J Therm Anal Calorim. 2016;126(2):881–9.

    Article  CAS  Google Scholar 

  11. Steckler KD, Quintiere JG, Rinkinen WJ. Flow induced by fire in a compartment. U.S. Department of Commerce, National Bureau of Standards, NBSIR 913-920, 1982.

  12. Zhang J, Lu S, Li Q, Yuen R, Yuan M, Li C. Impacts of elevation on pool fire behavior in a closed compartment: a study based upon a distinct stratification phenomenon. J Fire Sci. 2013;31:178–93.

    Article  Google Scholar 

  13. Li YL, Wang YH, Lu SX. Ignition of the leaked diesel on a heated horizontal surface. Fire Saf J. 2010;45:58–68.

    Article  CAS  Google Scholar 

  14. Chatris JM, Planas E, Amaldos J, Casal J. Effect of thin-layer boilover on hydrocarbon pool fires. Combust Sci Technol. 2001;171(1):141–61.

    Article  CAS  Google Scholar 

  15. Zhang J, Lu S, Li Q, Yuen R, Chen B, Yuan M, Li C. Smoke filling in closed compartments with elevated fire sources. Fire Saf J. 2012;54:14–23.

    Article  Google Scholar 

  16. Zhang J, Lu S, Li Q, Li C, Yuan M, Yuen R. Experimental study on elevated fires in a ceiling vented compartment. J Therm Sci. 2013;22(4):377–82.

    Article  Google Scholar 

  17. Laurent GM. A parametric study of the effect of fire source elevation in a compartment. Master Thesis, Virginia Polytechnic Institute and State University, USA, 2004.

  18. Beyler C. Development and Burning of a Layer of Products of Incomplete Combustion Generated by a Buoyant Diffusion Flame Ph.D. Thesis Harvard University, Cambridge, MA; 1983.

  19. Backovsky J, Foote K, Alvares NJ. Temperature profiles in forced-ventilation enclosure fires, Fire Safety Science. Tokyo: Hemisphere Publishing Corporation; 1989. p. 315–24.

    Google Scholar 

  20. Xu Y, Lv C, Shen R, Wang Z, Wang Q. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2019;136:1237–47.

    Article  CAS  Google Scholar 

  21. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18(3):255–72.

    Article  CAS  Google Scholar 

  22. Zhang B, Zhang J, Huang Y, Wang Q, Yu Z, Fan M. Burning process and fire characteristics of transformer oil. J Therm Anal Calorim. 2020;139:1839–48.

    Article  CAS  Google Scholar 

  23. Pretrel H, Querre P, Forestier M. Experimental study of the burning rate behaviour in confined and ventilated fire compartments. In: Fire safety science proceedings of the eighth international symposium. 2005. p. 1217–1228.

  24. Huggett C. Estimation of rare of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4:61–5.

    Article  CAS  Google Scholar 

  25. Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93.

    Article  CAS  Google Scholar 

  26. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    Article  CAS  Google Scholar 

  27. Blevins LG, Pitts WM. Modelling of bare and aspirated thermocouples in compartment fires gradients. Fire Saf J. 1999;33:239–59.

    Article  Google Scholar 

  28. Sudheer S, Prabhu SV. Measurememnt of flame emissivity of hydrocarbon pool fires. Fire Technol. 2012;48:183–217.

    Article  Google Scholar 

  29. Chaudhary A, Gupta A, Kumar S. Studies on jatropha oil pool fire. Therm Sci Eng Progr. 2018;6:104–27.

    Article  Google Scholar 

  30. Peatross MJ, Beyler CL. Ventilation effects on compartment fire characterization. Fire Safe Sci. 1997;5:403–14.

    Article  Google Scholar 

  31. Chen X, Lu S, Ding Z. Initial fuel depth effect on the burning characteristics of thin-layer pool fire in a confined enclosure. J Therm Anal Calorim. 2020;139:1409–18.

    Article  CAS  Google Scholar 

  32. McCaffrey BJ. Purely buoyant diffusion flames: some experimental results Final Report. 1978. https://fire.nist.gov/bfrlpubs/fire79/art001.html.

  33. Heskestad G. Fire plumes, flame height, and air entrainment. SFPE Handbook of Fire Protection Engineering, 3rd ed., National Fire Protection Association, Quincy, MA, chap. 2-1, 2002.

  34. Thomas PH. The size of flames from natural fire. Symp Combust. 1963;9(1):844–59.

    Article  Google Scholar 

  35. Liu Q, Tao C, Huang Y, Wang P, Meng S, Liu X, He P. The flame height of rectangular pool fires bounded by a sidewall with different distances and aspect ratios. J Therm Anal Calorim. 2019;138:1415–22.

    Article  CAS  Google Scholar 

  36. Zukoski EE, Kubota T, Cetegen B. Entrainment in fire plumes. Fire Saf J. 1981;3:107–21.

    Article  Google Scholar 

  37. Koseki H. Combustion properties of large liquid pool fires. Fire Technol. 1989;25:241–55.

    Article  Google Scholar 

  38. McCaffrey BJ, Heskestad G. A robust bidirectional low-velocity probe for flame and fire application. Combust Flame. 1976;26:125–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Bhabha Atomic Research Center, Mumbai India, with Project No. DAE-973-MID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, M.K., Gupta, A., Kumar, R. et al. Effects of elevated pool fire in a naturally ventilated compartment. J Therm Anal Calorim 146, 341–353 (2021). https://doi.org/10.1007/s10973-020-09954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09954-8

Keywords

Navigation