Skip to main content
Log in

Crystallization of TiO2 xerogel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For utilization of TiO2 in advanced applications, TiO2 after thermal treatment has to be in crystalline phase of anatase, because it gives the desired (photocatalytic) properties to material. The work deals with the study of anatase crystallization in TiO2 xerogel (dried at 80 °C) which was prepared from sol in “titanium isopropoxide–isopropyl alcohol–nitric acid–distilled water” system. DTA/TG analysis at heating rates of 10 and 2 °C min−1 was used for study of processes which take place during the thermal treatment of xerogel. Besides assumed anatase crystallization, the processes connected with mass loss were observed, and therefore, the process of thermal treatment of xerogel was observed using high-temperature Raman spectroscopy and high-temperature X-ray diffraction. Based on the comparison of results of all analyses, it can be concluded that the anatase is formed from xerogel by sequent processes in the temperature range of 280–400 °C—the first process represents the decomposition of xerogel and subsequent formation of amorphous TiO2 and the second process represents the formation of crystalline anatase, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbas F, Bensaha R, Taroré H. The influence of Zn+2 doping and annealing temperature on grown-up of nanostructures TiO2 thin films prepared by sol-gel dip-coating method and their photocatalytic application. Optik. 2019;180:361–9.

    Article  CAS  Google Scholar 

  2. Zanatta AR. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. AIP Adv. 2017;7:075201.

    Article  Google Scholar 

  3. Dubey RS. Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett. 2018;215:312–7.

    Article  CAS  Google Scholar 

  4. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–74.

    Article  CAS  Google Scholar 

  5. Di Paola A, Bellardita M, Palmisano L. Brookite, the least known TiO2 photocatalyst. Catalysts. 2013;3:36–73.

    Article  Google Scholar 

  6. Zhao LZ, Han K, Li F, Yao MM. Tridoped TiO2 composite films for improved photocatalytic activities. Coatings. 2019;9:127.

    Article  Google Scholar 

  7. Shah SK, Hayat K, Ali K. Effect of TiO2 interlayer on the performance of inverted polymeric solar cells. Mater Res Express. 2019;6:065102.

    Article  CAS  Google Scholar 

  8. Saini KK, Sharma SD, Chanderkant, Kar M, Singh D, Sharma CP. Structural and optical properties of TiO2 thin films derived by sol-gel coating process. J Non-Cryst Solids. 2007;353:2469–73.

    Article  CAS  Google Scholar 

  9. Choudhury B, Choudhury A. Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int Nano Lett. 2013;3:55.

    Article  Google Scholar 

  10. Porkodi K, Arokiamary SD. Synthesis and spectroscopic characterization of nanostructured anatase titania: a photocatalysts. Mater Charact. 2007;58:495–503.

    Article  CAS  Google Scholar 

  11. Viana MM, Soares VF, Mohallem NDS. Synthesis and characterization of TiO2 nanoparticles. Ceram Int. 2010;36:2047–53.

    Article  CAS  Google Scholar 

  12. Mahshid S, Askari M, Sasani Ghamsari M. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Tech. 2007;189:296–300.

    Article  CAS  Google Scholar 

  13. Zhu KR, Zhang MS, Chen Q, Yin Z. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys Lett A. 2005;340:220–7.

    Article  CAS  Google Scholar 

  14. Hardcastle FD. Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. J Arkansas Acad Sci. 2011;65:43–8.

    CAS  Google Scholar 

  15. Li JG, Ishigaki T. Brookite → rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater. 2004;52:5143–50.

    Article  CAS  Google Scholar 

  16. Ischia M, Campostrini R, Lutterotti L, García-López E, Palmisano L, Schiavello M, Pirillo F, Molinari R. Synthesis, characterization and photocatalytic activity of TiO2 powders prepared under different gelling and pressure conditions. J Sol-Gel Sci Technol. 2005;3:201–13.

    Article  Google Scholar 

  17. Mechiakh R, Ben Sedrine N, Ben Naceur J, Chtourou R. Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol-gel dip-coating. Surf Coat Technol. 2011;206:243–9.

    Article  CAS  Google Scholar 

  18. Li H, Zhang W, Guan LX, Li F, Yao MM. Visible light active TiO2–ZnO composite films by cerium and fluorine codoping for photocatalytic decontamination. Mat Sci Semicon Proc. 2015;40:310–8.

    Article  CAS  Google Scholar 

  19. Hruška B, Netriová Z, Vasková Z, Boča M, Chromčíková M, Liška M. High-temperature Raman study of K2ZrF6 phase transitions. J Alloys Compd. 2019;791:45–50.

    Article  Google Scholar 

  20. Chromčíková M, Osipov AA, Osipova LM, Hruška B, Liška M, Svoboda R. Thermodynamic model and high temperature Raman spectra of Na2O-B2O3 glassforming melts. J Alloys Compd. 2019;798:700–5.

    Article  Google Scholar 

  21. Hruška B, Osipov AA, Osipova LM, Chromčíková M, Černá A, Liška M. Thermodynamic model and high-temperature Raman spectra of 25Na2O-75B2O3 glassforming melts. J Therm Anal Calorim. 2018;133:429–33.

    Article  Google Scholar 

  22. Halary E, Haro-Poniatowski E, Benvenuti G, Hoffmann P. Crystallinity of titania thin films deposited by light induced chemical vapor deposition. Appl Surf Sci. 2000;168:61–5.

    Article  CAS  Google Scholar 

  23. Kavei G, Ahmadi K, Kavei A. Self cleaning on photocatalyst basis of nano-crystalline TiO2 thin film prepared by spray pyrolysis. Trans Indian Ceram Soc. 2012;71:31–8.

    Article  CAS  Google Scholar 

  24. Yoshitake H, Abe D. Raman spectroscopic study of the framework structure of amorphous mesoporous titania. Micropor Mesopor Mater. 2009;119:267–75.

    Article  CAS  Google Scholar 

  25. Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S. Sol-gel nanocrystalline brookite-rich titania films. Mater Lett. 2004;58:2618–22.

    Article  CAS  Google Scholar 

  26. Hu Y, Tsai H-L, Huang C-L. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. J Eur Ceram Soc. 2003;23:691–6.

    Article  CAS  Google Scholar 

  27. Funakoshi K, Nonami T. Anatase titanium dioxide crystallization by a hydrolysis reaction of titanium alkoxide without annealing. J Am Ceram Soc. 2006;89:2381–6.

    Article  CAS  Google Scholar 

  28. Pagáčová J, Plško A, Michalková K. Functionalization of glass surface by nanocomposite TiO2 films. Phys Chem Glasses: Eur J Glass Sci Technol B. 2013;54:137–43.

    Google Scholar 

  29. Pagáčová J, Plško A, Michalková K, Zemanová V, Papučová I. The influence of “small molecules” on crystallization of TiO2 xerogels. Procedia Eng. 2016;136:280–6.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Projects VEGA 1/0589/17 and VEGA 1/0431/18 of the Slovak Grant Agency for Science. This paper is a part of dissemination activities of FunGlass Project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No. 739566.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Pagáčová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagáčová, J., Plško, A., Papučová, I. et al. Crystallization of TiO2 xerogel. J Therm Anal Calorim 142, 1643–1648 (2020). https://doi.org/10.1007/s10973-020-09682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09682-z

Keywords

Navigation