Skip to main content
Log in

Experimental study of the effect of disk obstacle rotating with Different angular ratios on heat transfer and pressure drop in a pipe with turbulent flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents the effects of a circular disk obstacle with different angle ratios on heat transfer and pressure drop under a turbulent flow inside the tube with a constant temperature wall. Remarkable investigations have suggested the use of various obstacles for heat transfer enhancement in heat exchangers. The used geometry for almost all studies has been fixed obstacles. However, the use of the rotary obstacle is an innovative issue to the author’s best knowledge. The obstacle rotation influences heat transfer rate through the effective displacement of the fluid particles. Thus, this investigation studies the effect of disk obstacle rotation from 50 to 200 rpm at different angle ratios and pitch ratios 1 and 2 on heat transfer and pressure drop in shell and tube heat exchanger of water–air type in the Reynolds number between 10,000 and 25,000. The results showed that rotating obstacles have less pressure drop than that of the fixed obstacle under similar shape and configuration. Compared to the smooth pipe, the Nusselt number, friction coefficient, and thermal performance coefficient increased by 300%, 69.38%, and 131%, respectively. The maximum heat performance coefficient 1.62 times relative to the fixed obstacle in similar condition was recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

V :

Fluid velocity (ms−1)

D :

Disk diameter (m)

H :

Convective heat transfer coefficient (W m−2k−1)

U :

Overall heat transfer coefficient

\(C_{\text{p}}\) :

Specific heat capacity at constant pressure (J kg−1 K−1)

\(\Delta P\) :

Air pressure difference (Pa)

L :

Tube length (m)

\(\Delta T_{\text{m}}\) :

Logarithmic mean temperature difference (k)

K :

Conductive heat transfer coefficient (W m−1 k−1)

A :

Surface area (m2)

R :

Heat resistance

n :

Rotation speed (rev min−1)

AR:

Angular ratio(α 360−1)

Re:

Reynolds number (= \(\rho V\) D μ−1)

Nu:

Nusselt number

f :

Friction coefficient

PR:

Pitch ratio

\(\dot{m}\) :

Mass flow rate (kg s−1)

Q :

Flow rate (m3 s−1)

\(\rho\) :

Density (kg m−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1))

\(\eta\) :

Thermal performance coefficient

i:

Internal

o:

External

a:

Air

s:

Smooth

f:

Fix

p:

Pipe

r:

Rotation

b:

Bulk

w:

Water

References

  1. Bergles AE. Techniques to augment heat transfer: Handbook of heat transfer(A 74-17085 05-33). New York: McGraw-Hill Book Co; 1973.

    Google Scholar 

  2. Du T, Chen Q, Du W, Cheng L. Performance of continuous helical baffled heat exchanger with varying elliptical tube layouts. Int J Heat Mass Transf. 2019;133:1165–75.

    Google Scholar 

  3. Keklikcioglu O, Ozceyhan V. Experimental investigation on heat transfer enhancement in a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Appl Therm Eng. 2018;131:686–95.

    Google Scholar 

  4. He Y, Liu L, Li P, Ma L. Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts. Appl Therm Eng. 2018;131:743–9.

    Google Scholar 

  5. Promvonge P. Heat transfer behaviors in round tube with conical ring inserts. Energy Convers Manag. 2008;49(1):8–15.

    CAS  Google Scholar 

  6. Nakhchi M, Esfahani J. Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers. Appl Therm Eng. 2019;156:494–505.

    Google Scholar 

  7. Liu W, Liu P, Wang J, Zheng N, Liu Z. Exergy destruction minimization: a principle to convective heat transfer enhancement. Int J Heat Mass Transf. 2018;122:11–21.

    Google Scholar 

  8. Zheng N, Liu P, Wang X, Shan F, Liu Z, Liu W. Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Appl Therm Eng. 2017;123:471–84.

    CAS  Google Scholar 

  9. Zheng N, Liu P, Shan F, Liu Z, Liu W. Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators. Appl Therm Eng. 2017;122:642–52.

    Google Scholar 

  10. Chingtuaythong W, Promvonge P, Thianpong C, Pimsarn M. Heat transfer characterization in a tubular heat exchanger with V-shaped rings. Appl Therm Eng. 2017;110:1164–71.

    Google Scholar 

  11. Bjerg A, Christoffersen K, Sørensen H, Hærvig J. Flow structures and heat transfer in repeating arrangements of staggered rectangular winglet pairs by Large Eddy Simulations: effect of winglet height and longitudinal pitch distance. Int J Heat Mass Transf. 2019;131:654–63.

    Google Scholar 

  12. Koolnapadol N, Sripattanapipat S, Skullong S. Effect of pitch spring of delta-winglets on thermal characteristics in a heat exchanger tube. J Res Appl Mech Eng. 2016;4(2):166–74.

    Google Scholar 

  13. Mozafarie SS, Javaherdeh K, Ghanbari O. Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins. J Therm Anal Calorim. 2020;1:1–13.

    Google Scholar 

  14. Noorbakhsh M, Zaboli M, Ajarostaghi SSM. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J Therm Anal Calorim. 2019;1:1–13.

    Google Scholar 

  15. Al-Obaidi AR, Sharif A. Investigation of the three-dimensional structure, pressure drop, and heat transfer characteristics of the thermohydraulic flow in a circular pipe with different twisted-tape geometrical configurations. J Therm Anal Calorim. 2020;1:1–26.

    Google Scholar 

  16. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    CAS  Google Scholar 

  17. Virgilio M, Mayo I, Dedeyne J, Van Geem K, Marin G, Arts T. Effects of 2-D and 3-D helical inserts on the turbulent flow in pipes. Exp Thermal Fluid Sci. 2020;110:109923.

    CAS  Google Scholar 

  18. Bhuiya MMK, Roshid MM, Talukder MMM, Rasul MG, Das P. Influence of perforated triple twisted tape on thermal performance characteristics of a tube heat exchanger. Appl Therm Eng. 2020;167:114769.

    Google Scholar 

  19. Promvonge P, Skullong S. Thermo-hydraulic performance in heat exchanger tube with V-shaped winglet vortex generator. Appl Therm Eng. 2020;164:114424.

    Google Scholar 

  20. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, et al. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Google Scholar 

  21. Saha SK. Thermal and friction characteristics of turbulent flow through rectangular and square ducts with transverse ribs and wire-coil inserts. Exp Thermal Fluid Sci. 2010;34(5):575–89.

    Google Scholar 

  22. Muthusamy C, Vivar M, Skryabin I, Srithar K. Effect of conical cut-out turbulators with internal fins in a circular tube on heat transfer and friction factor. Int Commun Heat Mass Transf. 2013;44:64–8.

    Google Scholar 

  23. Kongkaitpaiboon V, Nanan K, Eiamsa-ard S. Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. Int Commun Heat Mass Transf. 2010;37(5):560–7.

    Google Scholar 

  24. Kongkaitpaiboon V, Nanan K, Eiamsa-Ard S. Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int Commun Heat Mass Transf. 2010;37(5):568–74.

    Google Scholar 

  25. Eiamsa-ard S, Kongkaitpaiboon V, Nanan K. Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes. Chin J Chem Eng. 2013;21(6):585–93.

    CAS  Google Scholar 

  26. Promvonge P. Thermal augmentation in circular tube with twisted tape and wire coil turbulators. Energy Convers Manag. 2008;49(11):2949–55.

    Google Scholar 

  27. Gunes S, Ozceyhan V, Buyukalaca O. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts. Exp Thermal Fluid Sci. 2010;34(6):684–91.

    Google Scholar 

  28. Promvonge P, Koolnapadol N, Pimsarn M, Thianpong C. Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl Therm Eng. 2014;62(1):285–92.

    Google Scholar 

  29. Eiamsa-ard S, Nivesrangsan P, Chokphoemphun S, Promvonge P. Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics. Int Commun Heat Mass Transf. 2010;37(7):850–6.

    Google Scholar 

  30. Promvonge P, Eiamsa-ard S. Heat transfer in a circular tube fitted with free-spacing snail entry and conical-nozzle turbulators. Int Commun Heat Mass Transf. 2007;34(7):838–48.

    Google Scholar 

  31. Bahiraei M, Gharagozloo K, Moayedi H. Experimental study on effect of employing twisted conical strip inserts on thermohydraulic performance considering geometrical parameters. Int J Therm Sci. 2020;149:106178.

    Google Scholar 

  32. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Experimental study on turbulent flow and heat transfer in an air to water heat exchanger using perforated circular-ring. Exp Thermal Fluid Sci. 2016;70:185–95.

    Google Scholar 

  33. Promvonge P, Promthaisong P, Skullong S. Experimental and numerical heat transfer study of turbulent tube flow through discrete V-winglets. Int J Heat Mass Transf. 2020;151:119351.

    CAS  Google Scholar 

  34. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23.

    CAS  Google Scholar 

  35. Ibrahim MM, Essa MA, Mostafa NH. A computational study of heat transfer analysis for a circular tube with conical ring turbulators. Int J Therm Sci. 2019;137:138–60.

    Google Scholar 

  36. Nakhchi M, Esfahani J. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2019;138(2):1423–36.

    CAS  Google Scholar 

  37. Fan A, Deng J, Guo J, Liu W. A numerical study on thermo-hydraulic characteristics of turbulent flow in a circular tube fitted with conical strip inserts. Appl Therm Eng. 2011;31(14–15):2819–28.

    Google Scholar 

  38. Chang SW, Yang TL, Liou JS. Heat transfer and pressure drop in tube with broken twisted tape insert. Exp Thermal Fluid Sci. 2007;32(2):489–501.

    CAS  Google Scholar 

  39. Sheikholeslami M, Farshad SA, Shafee A, Tlili I. Modeling of solar system with helical swirl flow device considering nanofluid turbulent forced convection. Physica A: Statistical Mechanics and its Applications; 2019. p. 123952.

    Google Scholar 

  40. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Google Scholar 

  41. Nguyen TK, Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Mouli KVC, et al. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2020;139(1):649–59.

    CAS  Google Scholar 

  42. Bhattacharyya S, Benim AC, Pathak M, Chamoli S, Gupta A. Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime. J Therm Anal Calorim. 2019;1:1–18.

    CAS  Google Scholar 

  43. Moghaddaszadeh N, Esfahani JA, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019;137(3):865–77.

    CAS  Google Scholar 

  44. Chang SW, Yu K-C. Heat transfer enhancement by spirally coiled spring inserts with and without segmental solid cords. Exp Thermal Fluid Sci. 2018;97:119–32.

    Google Scholar 

  45. Sheikholeslami M, Darzi M, Sadoughi M. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    CAS  Google Scholar 

  46. Bartwal A, Gautam A, Kumar M, Mangrulkar CK, Chamoli S. Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring–metal wire net inserts. Chem Eng Process-Process Intensific. 2018;124:50–70.

    CAS  Google Scholar 

  47. Nalavade SP, Prabhune CL, Sane NK. Effect of novel flow divider type turbulators on fluid flow and heat transfer. Therm Sci Eng Progress. 2019;9:322–31.

    Google Scholar 

  48. Zheng Y, Yang H, Mazaheri H, Aghaei A, Mokhtari N, Afrand M. An investigation on the influence of the shape of the vortex generator on fluid flow and turbulent heat transfer of hybrid nanofluid in a channel. J Therm Anal Calorim. 2020;1:1–14.

    Google Scholar 

  49. Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2020;139(3):2365–80.

    CAS  Google Scholar 

  50. Omidi M, Darzi AAR, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137(4):1451–62.

    CAS  Google Scholar 

  51. Motevasel M, Nazar ARS, Jamialahmadi M. Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles. J Therm Anal Calorim. 2019;135(1):133–43.

    CAS  Google Scholar 

  52. Miansari M, Jafarzadeh A, Arasteh H, Toghraie D. Thermal performance of a helical shell and tube heat exchanger without fin, with circular fins, and with V-shaped circular fins applying on the coil. J Therm Anal Calorim. 2020;1:1–13.

    Google Scholar 

  53. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2020;139(5):3317–29.

    CAS  Google Scholar 

  54. Abdelrazek AH, Kazi S, Alawi OA, Yusoff N, Oon CS, Ali HM. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2020;139(3):1637–53.

    CAS  Google Scholar 

  55. Khanmohammadi S, Rahimi Z, Khanmohammadi S, Afrand M. Triple-objective optimization of a double-tube heat exchanger with elliptic cross section in the presence TiO2 nanofluid. J Therm Anal Calorim. 2019;1:1–12.

    Google Scholar 

  56. Incropera FP, Lavine AS, Bergman TL, DeWitt DP. Fundamentals of heat and mass transfer. New York: Wiley; 2007.

    Google Scholar 

  57. Webb RL, Kim N-H. Principles Enhanced Heat Trans. Garland Sci; 2004

  58. Dittus F, Boelter L. University of California publications on engineering. University of California publications in Engineering. 1930;2:371.

    Google Scholar 

  59. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16(2):359–68.

    Google Scholar 

  60. Kays WM, Crawford ME. Convective heat and mass transfer. New York: McGraw-Hill; 1993.

    Google Scholar 

  61. Moody LF. Friction factors for pipe flow. Trans Asme. 1944;66:671–84.

    Google Scholar 

  62. Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties. In: Hartnett JP, Irvine TF, editors. Advances in heat transfer. Amsterdam: Elsevier; 1970. p. 503–64.

    Google Scholar 

  63. Vahidifar S, Kahrom M, Mamourian M. Experimental and numerical evaluation of heat transfer enhancement in tubes with obstacles in turbulence regimes. Mech Eng. 2015;31(1):65–71.

    Google Scholar 

  64. Kline SJ. Describing uncertainty in single sample experiments. Mech Engineering. 1953;75:3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad reza Assari or Seyedmohammad Javadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The detailed calculations and analysis of the uncertainty

Appendix: The detailed calculations and analysis of the uncertainty

The method introduced by Kline and Mcclintock was used to compute the uncertainties of the experimental values [64]. In the Kline and Mcclintock [64] equation, the magnitude of the uncertainty is expressed as R(uR), where R = R(× 1, × 2,…, xn) and xn is a variable that affects the results of R.

$$u_{\text{R}} = \left[ {\sum\limits_{{\text{i}} = 1}^{n} {\left( {\frac{\partial R}{{\partial x_{\text{i}} }}u_{{x_{\text{i}} }} } \right)^{2} } } \right]^{0.5}$$
(17)

Reynolds number uncertainty

The Reynolds number is obtained from relation 17 and its uncertainty from relation 18.

$$\text{Re} = \frac{\rho VD}{\mu }$$
(18)
$$u_{\text{Re}} = \left( \begin{aligned} \left( {\frac{{\partial \text{Re} }}{\partial \rho }} \right)^{2} u_{\rho }^{2} + \left( {\frac{{\partial \text{Re} }}{\partial V}} \right)^{2} u_{\text{V}}^{2} + \hfill \\ \left( {\frac{{\partial \text{Re} }}{\partial D}} \right)^{2} u_{\text{D}}^{2} + \left( {\frac{{\partial \text{Re} }}{\partial \mu }} \right)^{2} u_{\mu }^{2} \hfill \\ \end{aligned} \right)^{0.5}$$
(19)

According to the above equations, the relative uncertainty of Nusselt number is calculated to be 5.3%.

Nusselt number uncertainty

The heat transfer is obtained from relation 20 and its uncertainty from relation 21.

$$Q = mc\Delta T$$
(20)
$$u_{\text{Q}} = \left( {\left( {\frac{\partial Q}{\partial m}} \right)^{2} u_{\text{m}}^{2} + \left( {\frac{\partial Q}{\partial \Delta T}} \right)^{2} u_{\Delta T}^{2} } \right)^{0.5}$$
(21)
$$\frac{\partial Q}{\partial m} = C\Delta T$$
(22)
$$\frac{\partial Q}{\partial \Delta T} = mc$$
(23)

The effective temperature difference between two fluids is obtained from relation 24 and its uncertainty from relation 25.

$${\text{LMTD}} = T_{\text{w}} - \frac{{T_{\text{i}} + T_{\text{o}} }}{2}$$
(24)
$$u_{\text{TD}} = \left( \begin{aligned} \left( {\frac{{\partial {\text{TD}}}}{{\partial T_{\text{w}} }}} \right)^{2} u_{{T_{\text{w}} }}^{2} + \left( {\frac{{\partial {\text{TD}}}}{{\partial T_{\text{o}} }}} \right)^{2} u_{{T_{\text{o}} }}^{2} + \hfill \\ \left( {\frac{{\partial {\text{TD}}}}{{\partial T_{\text{i}} }}} \right)^{2} u_{{T_{\text{i}} }}^{2} \hfill \\ \end{aligned} \right)^{0.5}$$
(25)
$$\frac{{\partial {\text{TD}}}}{{\partial T_{\text{w}} }} = 1$$
(26)
$$\frac{{\partial {\text{TD}}}}{{\partial T_{\text{o}} }} = \frac{{\partial {\text{TD}}}}{{\partial T_{\text{i}} }} = - \frac{1}{2}$$
(27)

The overall heat transfer coefficient is obtained from relation 28 and its uncertainty from relation 29.

$$U = \frac{Q}{{A \cdot {\text{TD}}}}$$
(28)
$$u_{\text{u}} = \left( \begin{aligned} \left( {\frac{\partial U}{\partial Q}} \right)^{2} u_{{T_{Q} }}^{2} + \left( {\frac{\partial U}{\partial A}} \right)^{2} u_{{T_{A} }}^{2} + \hfill \\ \left( {\frac{U}{\text{TD}}} \right)^{2} u_{\text{TD}}^{2} \hfill \\ \end{aligned} \right)^{0.5}$$
(29)
$$\frac{\partial U}{\partial Q} = \frac{1}{{A \cdot {\text{TD}}}}$$
(30)
$$\frac{\partial U}{\partial A} = - \frac{Q}{{A^{2} \cdot {\text{TD}}}}$$
(31)
$$\frac{\partial U}{{\partial {\text{TD}}}} = - \frac{Q}{{A \cdot {\text{TD}}^{2} }}$$
(32)

The heat transfer coefficient is obtained from relation 33 and its uncertainty from relation 34.

$$h = \left( {\frac{1}{U} - \frac{1}{{h_{\text{w}} }}} \right)^{ - 1}$$
(33)
$$u_{\text{h}} = \frac{\partial h}{\partial U}u_{\text{u}}$$
(34)
$$\frac{\partial h}{\partial U} = \frac{1}{{U^{2} }}\left( {\frac{1}{U} - \frac{1}{{h_{\text{w}} }}} \right)^{ - 2}$$
(35)

The Nusselt number is obtained from relation 36 and its uncertainty from relation 37.

$${\text{Nu}} = \frac{{h_{\text{i}} D}}{k}$$
(36)
$$u_{\text{Nu}} = \left( {\left( {\frac{{\partial {\text{Nu}}}}{\partial h}} \right)^{2} u_{h}^{2} + \left( {\frac{{\partial {\text{Nu}}}}{\partial h}} \right)^{2} u_{\text{D}}^{2} } \right)^{0.5}$$
(37)
$$\frac{{\partial {\text{Nu}}}}{\partial h} = \frac{D}{K}$$
(38)
$$\frac{{\partial {\text{Nu}}}}{\partial h} = \frac{h}{K}$$
(39)

According to the above equations, the relative uncertainty of Nusselt number is calculated to be 7.3%.

Coefficient friction uncertainty

The coefficient friction is obtained from relation 40 and its uncertainty from relation 41.

$$f = \frac{\Delta P}{{\frac{1}{2}\frac{L}{D}\rho V^{2} }}$$
(40)
$$u_{\text{f}} = \left( \begin{aligned} \left( {\frac{\partial f}{\partial \Delta P}} \right)^{2} u_{\Delta P}^{2} + \left( {\frac{\partial f}{\partial D}} \right)^{2} u_{\text{D}}^{2} + \hfill \\ \left( {\frac{\partial f}{\partial L}} \right)^{2} u_{\text{L}}^{2} + \left( {\frac{\partial f}{\partial V}} \right)^{2} u_{\text{V}}^{2} + \hfill \\ \left( {\frac{\partial f}{\partial \rho }} \right)^{2} u_{\rho }^{2} \hfill \\ \end{aligned} \right)^{0.5}$$
(41)
$$\frac{\partial f}{\partial \Delta P} = \frac{2D}{{\rho LV^{2} }}$$
(42)
$$\frac{\partial f}{\partial L} = - \frac{2D\Delta P}{{\rho L^{2} V^{2} }}$$
(43)
$$\frac{\partial f}{\partial V} = - \frac{4D\Delta P}{{\rho L^{{}} V^{3} }}$$
(44)
$$\frac{\partial f}{\partial \rho } = - \frac{2D\Delta P}{{\rho^{2} L^{{}} V^{2} }}$$
(45)

According to the above equation, the relative uncertainty of friction factor is calculated to be 7%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banihashemi, S., Assari, M., Javadi, S. et al. Experimental study of the effect of disk obstacle rotating with Different angular ratios on heat transfer and pressure drop in a pipe with turbulent flow. J Therm Anal Calorim 144, 1401–1416 (2021). https://doi.org/10.1007/s10973-020-09653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09653-4

Keywords

Navigation