Skip to main content
Log in

Calibration of differential scanning calorimeter (DSC) for thermal properties analysis of phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase change material (PCM) selection for particular applications mainly depends on its phase change temperature and latent heat, which were commonly measured by the differential scanning calorimetry (DSC). However, the DSC instruments are not absolute measuring devices and calibration is extremely important to ensure the accuracy of determined data. Meanwhile, the PCM with melting temperature between 0 and 65 °C is the most common interest for energy saving in buildings. This study, therefore, calibrated the DSC produce (NanoTechnology Inc.) by the high-purity metals with various regression methods for low melting temperature PCM thermal properties analysis. In the end, the paraffin n-eicosane was introduced to evaluate the accuracy of the temperature and latent heat measurements of the DSC. The experimental results showed that the accuracy of calibration could be improved by higher-order and more reference materials in a broad temperature range. However, the measurement results of n-eicosane proved that the 0-order regression method could offer good accuracy with only one suitable calibrant in a particular temperature range. Therefore, this research suggests the selection of reference materials for DSC calibration should consider the target of measurement temperature range as well as the thermal stabilities of calibrants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a0, a1, a2, a3:

The correlation coefficient

H :

Latent heat/mJ mg−1

H :

Inaccuracy of latent heat/%

K :

Measured value of heat/mJ mg−1

K(T):

Literature value of heat/mJ mg−1

S :

DSC span value used in measurement/mW

T :

Measured value of temperature/°C

T m :

The inaccuracy of melting temperature/°C

x :

Measured temperature/°C

y :

Corrected temperature/°C

PCM:

Phase change material

DSC:

Differential scanning calorimetry

Ga:

Gallium

In:

Indium

Sn:

Tin

cal:

Measured value

lit:

Literature value

m:

Melting

M:

Measured

S:

Standard

References

  1. Xu J, Wang RZ, Li Y. A review of available technologies for seasonal thermal energy storage. Sol Energy. 2014;103:610–38. https://doi.org/10.1016/j.solener.2013.06.006.

    Article  CAS  Google Scholar 

  2. Su W, Darkwa J, Kokogiannakis G. Numerical thermal evaluation of laminated binary microencapsulated phase change material drywall systems. Build Simul. 2019. https://doi.org/10.1007/s12273-019-0563-z.

    Article  Google Scholar 

  3. Su W, Darkwa J, Kokogiannakis G. Nanosilicon dioxide hydrosol as surfactant for preparation of microencapsulated phase change materials for thermal energy storage in buildings. Int J Low-Carbon Technol. 2018;13(4):301–10. https://doi.org/10.1093/ijlct/cty032.

    Article  CAS  Google Scholar 

  4. Su W, Darkwa J, Kokogiannakis G. Development of microencapsulated phase change material for solar thermal energy storage. Appl Therm Eng. 2017;112:1205–12. https://doi.org/10.1016/j.applthermaleng.2016.11.009.

    Article  CAS  Google Scholar 

  5. Li Y, Darkwa J, Kokogiannakis G, Su W. Phase change material blind system for double skin façade integration: system development and thermal performance evaluation. Appl Energy. 2019;252:113376. https://doi.org/10.1016/j.apenergy.2019.113376.

    Article  Google Scholar 

  6. Su W, Li Y, Zhou T, Darkwa J, Kokogiannakis G, Li Z. Microencapsulation of paraffin with poly (urea methacrylate) shell for solar water heater. Energies. 2019;12(18):3406. https://doi.org/10.3390/en12183406.

    Article  CAS  Google Scholar 

  7. Gschwander S, Haussmann T, Hagelstein G, Sole A, Cabeza LF, Diarce G et al. Standardization of PCM Characterization via DSC. In: The 13th international conference on energy storage 2015.

  8. Lazaro A, Peñalosa C, Solé A, Diarce G, Haussmann T, Fois M, et al. Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Appl Energy. 2013;109:415–20. https://doi.org/10.1016/j.apenergy.2012.11.045.

    Article  Google Scholar 

  9. Price DM. Temperature calibration of differential scanning calorimeters. J Therm Anal Calorim. 1995;45:1285–96.

    Article  CAS  Google Scholar 

  10. Gmelin E, Sarge SM. Calibration of differential scanning calorimeters. Pure Appl Chem. 1995;67:1789–800.

    Article  CAS  Google Scholar 

  11. Braga CI, Rezende MC, Costa ML. Methodology for DSC calibration in high heating rates. J Aerosp Technol Manag. 2011;3(2):179–92. https://doi.org/10.5028/jatm.2011.03021911.

    Article  CAS  Google Scholar 

  12. Pishchur DP, Drebushchak VA. Recommendations on DSC calibration. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-015-5186-8.

    Article  Google Scholar 

  13. Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91. https://doi.org/10.1016/j.rser.2015.04.044.

    Article  CAS  Google Scholar 

  14. He B, Mari GE, Fredrik S. Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy. 1999;24(12):1015–28. https://doi.org/10.1016/S0360-5442(99)00055-9.

    Article  Google Scholar 

  15. Christoph R, Henri S, Peter H, Stefan H. Calibration of a T-History calorimeter to measure enthalpy curves of phase change materials in the temperature range from 40 to 200 °C. Meas Sci Technol. 2014;25(3):035011.

    Article  Google Scholar 

  16. Vélez C, de Zárate JM, Khayet M. Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int J Therm Sci. 2015;94:139–46. https://doi.org/10.1016/j.ijthermalsci.2015.03.001.

    Article  CAS  Google Scholar 

  17. Charsley EL, Laye PG, Markham HM, Le Goff T. Calibration of differential scanning calorimeters: a comparison between indium and diphenylacetic acid. Thermochim Acta. 2010;497(1):72–6. https://doi.org/10.1016/j.tca.2009.08.010.

    Article  CAS  Google Scholar 

  18. Differential Scanning Calorimeter Model Operation Manual. SII NanoTechnology Inc.; 2007.

  19. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;14(2):615–28. https://doi.org/10.1016/j.rser.2009.10.015.

    Article  CAS  Google Scholar 

  20. Safety Data Sheet of Cesium [database on the Internet] 2017. https://www.alfa.com/zh-cn/content/msds/USA/10146.pdf. Accessed 20 Oct 2017.

  21. Safety Data Sheet of Mercury [database on the Internet] 2017. https://www.alfa.com/zh-cn/content/msds/USA/H31988.pdf. Accessed 20 Oct 2017.

  22. Co S-A. Product specification of Eicosane. 2017. http://www.sigmaaldrich.com/catalog/product/aldrich/219274?lang=en&region=GB. Accessed 27 Jan 2016.

  23. Safety Data Sheet of Gallium [database on the Internet] 2017. Accessed 20 Oct 2017.

  24. Safety Data Sheet of Rubidium [database on the Internet] 2017. https://www.alfa.com/zh-cn/catalog/044214/. Accessed 20 Oct 2017.

  25. Safety Data Sheet of Potassium [database on the Internet] 2017. https://www.alfa.com/zh-cn/catalog/010299/. Accessed 20 Oct 2017.

  26. Castellón C, Günther E, Mehling H, Hiebler S, Cabeza LF. Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC-A study of different measurement procedures and their accuracy. Int J Energy Res. 2008;32(13):1258–65. https://doi.org/10.1002/er.1443.

    Article  Google Scholar 

  27. Kousksou T, Jamil A, El Omari K, Zeraouli Y, Le Guer Y. Effect of heating rate and sample geometry on the apparent specific heat capacity: DSC applications. Thermochim Acta. 2011;519(1–2):59–64. https://doi.org/10.1016/j.tca.2011.02.033.

    Article  CAS  Google Scholar 

  28. Günther E, Hiebler S, Mehling H, Redlich R. Enthalpy of phase change material as function of temperature—requireed accuracy and suitable measurement methods. Int J Thermophys. 2009;30:1257–69.

    Article  Google Scholar 

  29. ASTM. ASTM D3418: Association Standards Testing Materials. Test method for transition temperatures of polymers by differential scanning calorimetry: Philadelphia, UAS; 2008.

  30. Central T-F. Thermophysical Properties: Phase Change Materials. 2017. https://www.thermalfluidscentral.org/encyclopedia/index.php/Thermophysical_Properties:_Phase_Change_Materials. Accessed 17 Nov 2017.

Download references

Acknowledgements

The author is thankful for the Natural Science Foundation of Shandong Province (No. ZR2017LEE017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguang Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Gao, L., Wang, L. et al. Calibration of differential scanning calorimeter (DSC) for thermal properties analysis of phase change material. J Therm Anal Calorim 143, 2995–3002 (2021). https://doi.org/10.1007/s10973-020-09470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09470-9

Keywords

Navigation