Skip to main content
Log in

Thermo-physical behavior of borosilicate glasses in the presence of high-level radioactive liquid waste constituents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Elemental composition of high-level radioactive liquid waste (HLW) from samples of various batches was assessed by using side-on-view inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Under robust condition (Mg ratio, 10.2 ± 0.4 at RF power 1.3 kW), t he plasma excitation temperature (Texe, 9925 ± 1950 K) was calculated using the Boltzmann plot method. Thermal behavior of major constituents (> 1 g L−1) of HLW, such as nitrates of Na+, Fe3+, Cs+, Nd3+, and UO2+2 , were studied using simultaneous thermal analyzer. Subsequently, the thermal stability of five and seven components borosilicate glasses was studied in detail with the above nitrates individually added as additives. Vapor pressure of sodium metaborate (NaBO2, one of the major vapor species from the glass melt in the off-gas system during vitrification of HLW) was estimated using transpiration thermogravimetry. Based on mass loss, the equilibrium vapor pressures (2.51–26.37 Pa) over a temperature span of 1233.15–1343.15 K were estimated. The molar enthalpy of vaporization (ΔvapH°) for sodium metaborate was calculated to be 287.84 ± 0.94 kJ mol−1 using the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ojovan M, Lee W. An introduction to nuclear waste immobilisation. 2nd ed. Heidelberg: Elsevier; 2014.

    Google Scholar 

  2. Selvakumar J, Rajasekaran S, Chitra S, Paul B. Biplob Paul Prog Nucl Energy. 2020. https://doi.org/10.1016/j.pnucene.2019.103135.

    Article  Google Scholar 

  3. Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, Raj KJG. J Nucl Mater. 2006. https://doi.org/10.1016/j.jnucmat.2006.07.004.

    Article  Google Scholar 

  4. Suneel G, Rajasekarn S, Selvakumar J, Kaushik CP, Gayen JK, Ravi KV. Nucl Eng Technol. 2019. https://doi.org/10.1016/j.net.2018.12.002.

    Article  Google Scholar 

  5. Short R. Procedia Mater Sci. 2014. https://doi.org/10.1016/j.mspro.2014.10.013.

    Article  Google Scholar 

  6. Gin S, Jollivet P, Tribet M, Peuget S, Schuller S. Radiochim Acta. 2017. https://doi.org/10.1515/ract-2016-2658.

    Article  Google Scholar 

  7. Stolyarova VL, Ivanov GG, Stolyar SV. Glass Phys. Chem. 2002. https://doi.org/10.1023/A:1015333715687.

    Article  Google Scholar 

  8. Asano M, Yasue Y. J Nucl Mater. 1986. https://doi.org/10.1016/0022-3115(86)90256-4.

    Article  Google Scholar 

  9. Asano M, Yasue Y. J Nucl Sci Technol. 2012. https://doi.org/10.1080/18811248.1985.9735760.

    Article  Google Scholar 

  10. Buchler A, Berkowitz JB. In: Eyring L, editor. Gaseeous ternary compounds of the alkali metals: advanced in high temperature chemistry. New York: Academic Press Inc; 1967. p. 95–152.

    Google Scholar 

  11. Narasimhan TSL, Viswanathan R, Nalini S. J Phys Chem B. 2011. https://doi.org/10.1021/jp206586u.

    Article  PubMed  Google Scholar 

  12. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

  13. Mermet JM, Boumans PWJM, editors. Spectroscopic diagnostic. Basic concepts, inductively coupled plasmas. emission spectroscopy, vol. 2. New York: Wiley; 1987.

    Google Scholar 

  14. Mermet JM. Spectrochim Acta B At Spectrosc. 1989;1:1. https://doi.org/10.1016/0584-8547(89)80110-7.

    Article  Google Scholar 

  15. Silva JCJ, Baccan N, Nobrega JA. J Braz Chem Soc. 2003. https://doi.org/10.1590/S0103-50532003000200020.

    Article  Google Scholar 

  16. Velitchkova N, Veleva O, Velichkov S, Markov P, Daskalova N. J Spectrosc. 2013. https://doi.org/10.1155/2013/505871.

    Article  Google Scholar 

  17. Cable M (1977) Kinetics of volatilization of sodium borate melts in Borate glasses: structure, properties, applications. In: Pye LD, Frechette VD, Kreidl NJ (eds) Conference on boron in glass and glass ceramics, Alfred University. http://doi.org/10.1007/978-1-4684-3357-9.

  18. Kracek FC, Posnjak E, Hendricks SB. J Am Chem Soc. 1931. https://doi.org/10.1021/ja01360a016.

    Article  Google Scholar 

  19. Freeman ES. J Phys Chem. 1956. https://doi.org/10.1021/j150545a005.

    Article  Google Scholar 

  20. Hildenbrand DL. Lau KH. J Chem Phys. 1993. https://doi.org/10.1063/1.465043.

    Article  Google Scholar 

  21. Cartledge GH. J Am Chem Soc. 1928. https://doi.org/10.1021/ja01398a001.

    Article  Google Scholar 

  22. Cartledge GH. J Am Chem Soc. 1928. https://doi.org/10.1021/ja01398a002.

    Article  Google Scholar 

  23. Pauling L. The nature of the chemical bond. 3rd ed. London: Cornell University; 1960.

    Google Scholar 

  24. Abe O, Utsunomiya T, Hoshino Y. Bull Chem Soc Jpn. 1983. https://doi.org/10.1246/bcsj.56.428.

    Article  Google Scholar 

  25. Ames LL, Wang JL, Margrave JL. Inorg Nucl Chem Lett. 1973. https://doi.org/10.1016/0020-1650(73)80003-0.

    Article  Google Scholar 

  26. Mukerji J. Trans Indian Ceram Soc. 1971. https://doi.org/10.1080/0371750X.1971.10840761.

    Article  Google Scholar 

  27. Oldfield LF, Wright RD. Glass Technol. 1962;3:59–68.

    CAS  Google Scholar 

  28. Barlow DF (1965) Volatilisation of fluorides, borates and arsenic from glass. In: Proceedings 7th international congress. Glass, Bruxelles.

  29. Buchler A, Mattuck TB. J Chem Phys. 1963. https://doi.org/10.1063/1.1734243.

    Article  Google Scholar 

  30. Buchler A, Marram EJ. J Chem Phys. 1963. https://doi.org/10.1063/1.1734244.

    Article  Google Scholar 

  31. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ. de Oliveira LCS. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-013-3339-1.

    Article  Google Scholar 

  32. Muller M, Villalba JC, Anaissi FJ. Semina Exact Technol Sci. 2014. https://doi.org/10.5433/1679-0375.2014v35n1p9.

    Article  Google Scholar 

  33. Ciurowa KW. Kozak AJ. J Therm Anal Calorim. 1999. https://doi.org/10.1023/A:1010112814013.

    Article  Google Scholar 

  34. Singh NB. Prog Cry Grow Charac Mater. 2002. https://doi.org/10.1016/S0960-8974(02)00016-5.

    Article  Google Scholar 

  35. Kidari A, Dussossoy JL, Brackx E, Caurant D, Magnin M, Giboire IB. J Am Ceram Soc. 2012. https://doi.org/10.1111/j.1551-2916.2012.05273.x.

    Article  Google Scholar 

  36. Ondreijcik RR. Garrett TP. J Phys Chem. 1961. https://doi.org/10.1021/j100821a020.

    Article  Google Scholar 

  37. Gorokhov LN, Gusarov AV, Makarov AV, Nikitin OT. Teplofiz Vys Temp. 1971;9:1173–6.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shri. K.V. Ravi, Chief Executive, Nuclear Recycle Board, Shri. J.K. Gayen, AGM (O), Integrated Nuclear Recycling Plant, Nuclear Recycle Board, Kalpakkam, for their keen interest in the work. Thanks to all the Members of Process Control Laboratory, Waste Immobilization Plant, Integrated Nuclear Recycling Plant, for their timely help during the ICP-AES and TG-DSC studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Selvakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, J., Maity, S., Rajasekaran, S. et al. Thermo-physical behavior of borosilicate glasses in the presence of high-level radioactive liquid waste constituents. J Therm Anal Calorim 142, 2251–2261 (2020). https://doi.org/10.1007/s10973-019-09130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09130-7

Keywords

Navigation