Skip to main content
Log in

Computational fluid dynamics analysis of the heat transfer and pressure drop of solar air heater with conic-curve profile ribs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study was to investigate the effect of the conic constants of rough geometries and the associated Reynolds numbers on the heat transfer and pressure drop of a solar air heater. An absorber plate attached to multiple conic-curve profile ribs was comprehensively analyzed. The results showed that decreasing the conic constant induced an increase in the Nusselt number and a decrease in the friction factor; therefore, the thermohydraulic performance parameter increased. The friction factor was notably invariable when the conic constant changed in the range of − 0.5 to 0. The maximum thermohydraulic performance parameter occurred at a Reynolds number of 8000, whereas the largest thermogeometric performance parameter occurred at a Reynolds number of 12,000. A regression analysis was performed for the correlations of both the Nusselt number and the friction factor as functions of the Reynolds number and the conic constant. The correlation coefficients of the Nusselt number and friction factor equations were 0.9978 and 0.9351, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Baulch B, Duong Do T, Le T-H. Constraints to the uptake of solar home systems in Ho Chi Minh City and some proposals for improvement. Renew Energy. 2018;118:245–56. https://doi.org/10.1016/j.renene.2017.10.106.

    Article  Google Scholar 

  2. Farjana SH, Huda N, Mahmud MAP, Saidur R. Solar process heat in industrial systems—a global review. Renew Sustain Energy Rev. 2018;82:2270–86. https://doi.org/10.1016/j.rser.2017.08.065.

    Article  Google Scholar 

  3. Gupta D, Solanki SC, Saini JS. Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Sol Energy. 1993;51(1):31–7. https://doi.org/10.1016/0038-092X(93)90039-Q.

    Article  CAS  Google Scholar 

  4. Karwa R, Solanki SC, Saini JS. Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. Int J Heat Mass Transf. 1999;42(9):1597–615. https://doi.org/10.1016/S0017-9310(98)00252-X.

    Article  CAS  Google Scholar 

  5. Karwa R. Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, v-continuous and v-discrete pattern. Int Commun Heat Mass Transf. 2003;30(2):241–50. https://doi.org/10.1016/S0735-1933(03)00035-6.

    Article  Google Scholar 

  6. Ahn SW. The effects of roughness types on friction factors and heat transfer in roughened rectangular duct. Int Commun Heat Mass Transf. 2001;28(7):933–42. https://doi.org/10.1016/S0735-1933(01)00297-4.

    Article  Google Scholar 

  7. Wang L, Sundén B. Experimental investigation of local heat transfer in a square duct with various-shaped ribs. Heat Mass Transf. 2006;43(8):759. https://doi.org/10.1007/s00231-006-0190-y.

    Article  Google Scholar 

  8. Karmare SV, Tikekar AN. Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int J Heat Mass Transf. 2007;50(21):4342–51. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.065.

    Article  CAS  Google Scholar 

  9. Lanjewar A, Bhagoria JL, Sarviya RM. Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness. Exp Therm Fluid Sci. 2011;35(6):986–95. https://doi.org/10.1016/j.expthermflusci.2011.01.019.

    Article  Google Scholar 

  10. Kumar K, Prajapati DR, Samir S. Heat transfer and friction factor correlations development for solar air heater duct artificially roughened with ‘S’ shape ribs. Exp Therm Fluid Sci. 2017;82:249–61. https://doi.org/10.1016/j.expthermflusci.2016.11.012.

    Article  CAS  Google Scholar 

  11. Hans VS, Saini RP, Saini JS. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Sol Energy. 2010;84(6):898–911. https://doi.org/10.1016/j.solener.2010.02.004.

    Article  Google Scholar 

  12. Kabeel AE, Khalil A, Shalaby SM, Zayed ME. Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. J Sol Energy Eng. 2016;138(5):051004–7. https://doi.org/10.1115/1.4034027.

    Article  Google Scholar 

  13. Hans VS, Gill RS, Singh S. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken arc ribs. Exp Therm Fluid Sci. 2017;80:77–89. https://doi.org/10.1016/j.expthermflusci.2016.07.022.

    Article  Google Scholar 

  14. Gholami A, Ajabshirchi Y, Ranjbar SF. Thermo-economic optimization of solar air heaters with arcuate-shaped obstacles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08273-x.

    Article  Google Scholar 

  15. Chauhan R, Thakur NS. Heat transfer and friction factor correlations for impinging jet solar air heater. Exp Therm Fluid Sci. 2013;44:760–7. https://doi.org/10.1016/j.expthermflusci.2012.09.019.

    Article  Google Scholar 

  16. Matheswaran MM, Arjunan TV, Somasundaram D. Energetic, exergetic and enviro-economic analysis of parallel pass jet plate solar air heater with artificial roughness. J Therm Anal Calorim. 2019;136(1):5–19. https://doi.org/10.1007/s10973-018-7727-4.

    Article  CAS  Google Scholar 

  17. Matheswaran MM, Arjunan TV, Somasundaram D. Analytical investigation of exergetic performance on jet impingement solar air heater with multiple arc protrusion obstacles. J Therm Anal Calorim. 2019;137(1):253–66. https://doi.org/10.1007/s10973-018-7926-z.

    Article  CAS  Google Scholar 

  18. Singh Yadav A, Kumar TM. Artificially roughened solar air heater: experimental investigations. Renew Sustain Energy Rev. 2014;36:370–411. https://doi.org/10.1016/j.rser.2014.04.077.

    Article  Google Scholar 

  19. Singh I, Singh S. A review of artificial roughness geometries employed in solar air heaters. Renew Sustain Energy Rev. 2018;92:405–25. https://doi.org/10.1016/j.rser.2018.04.108.

    Article  Google Scholar 

  20. Sharma SK, Kalamkar VR. Thermo-hydraulic performance analysis of solar air heaters having artificial roughness—a review. Renew Sustain Energy Rev. 2015;41:413–35. https://doi.org/10.1016/j.rser.2014.08.051.

    Article  Google Scholar 

  21. Singh Bisht V, Kumar Patil A, Gupta A. Review and performance evaluation of roughened solar air heaters. Renew Sustain Energy Rev. 2018;81:954–77. https://doi.org/10.1016/j.rser.2017.08.036.

    Article  Google Scholar 

  22. Kumar S, Saini RP. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renew Energy. 2009;34(5):1285–91. https://doi.org/10.1016/j.renene.2008.09.015.

    Article  Google Scholar 

  23. Yadav AS, Bhagoria JL. Heat transfer and fluid flow analysis of solar air heater: a review of CFD approach. Renew Sustain Energy Rev. 2013;23:60–79. https://doi.org/10.1016/j.rser.2013.02.035.

    Article  Google Scholar 

  24. Chamoli S, Thakur NS. Numerical based heat transfer and friction factor correlations of rectangular ducts roughened with transverse perforated baffles. Eng Phys Sci. 2013;11(2):21. https://doi.org/10.2004/wjst.v11i2.594.

    Article  Google Scholar 

  25. Zheng S, Ji T, Xie G, Sundén B. On the improvement of the poor heat transfer lee-side regions of square cross-section ribbed channels. Numer Heat Transf Part A Appl. 2014;66(9):963–89. https://doi.org/10.1080/10407782.2014.894396.

    Article  CAS  Google Scholar 

  26. Singh S, Singh B, Hans VS, Gill RS. CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib. Energy. 2015;84:509–17. https://doi.org/10.1016/j.energy.2015.03.015.

    Article  Google Scholar 

  27. Chaube A, Sahoo PK, Solanki SC. Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renew Energy. 2006;31(3):317–31. https://doi.org/10.1016/j.renene.2005.01.012.

    Article  CAS  Google Scholar 

  28. Singh I, Singh S. CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Sol Energy. 2018;162:442–53. https://doi.org/10.1016/j.solener.2018.01.019.

    Article  Google Scholar 

  29. Bezbaruah PJ, Das RS, Sarkar BK. Thermo-hydraulic performance augmentation of solar air duct using modified forms of conical vortex generators. Heat Mass Transf. 2018. https://doi.org/10.1007/s00231-018-2521-1.

    Article  Google Scholar 

  30. Alam T, Kim M-H. Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. Appl Therm Eng. 2017;126:458–69. https://doi.org/10.1016/j.applthermaleng.2017.07.181.

    Article  Google Scholar 

  31. Singh S. Performance evaluation of a novel solar air heater with arched absorber plate. Renew Energy. 2017;114:879–86. https://doi.org/10.1016/j.renene.2017.07.109.

    Article  Google Scholar 

  32. Kumar R, Goel V, Kumar A, Khurana S, Singh P, Bopche SB. Numerical investigation of heat transfer and friction factor in ribbed triangular duct solar air heater using computational fluid dynamics (CFD). J Mech Sci Technol. 2018;32(1):399–404. https://doi.org/10.1007/s12206-017-1240-8.

    Article  Google Scholar 

  33. Yadav AS, Bhagoria JL. A numerical investigation of turbulent flows through an artificially roughened solar air heater. Numer Heat Transf Part A Appl. 2014;65(7):679–98. https://doi.org/10.1080/10407782.2013.846187.

    Article  Google Scholar 

  34. Kumar R, Geol V, Kumar A. A parametric study of the 2D model of solar air heater with elliptical rib roughness using CFD. J Mech Sci Technol. 2017;31(2):959–64. https://doi.org/10.1007/s12206-017-0148-7.

    Article  Google Scholar 

  35. Thakur DS, Khan MK, Pathak M. Performance evaluation of solar air heater with novel hyperbolic rib geometry. Renew Energy. 2017;105:786–97. https://doi.org/10.1016/j.renene.2016.12.092.

    Article  Google Scholar 

  36. ASHRAE Standard 93-97, Method of testing to determine the thermal performance of solar collector. 1977.

  37. Skullong S, Thianpong C, Promvonge P. Effects of rib size and arrangement on forced convective heat transfer in a solar air heater channel. Heat Mass Transf. 2015;51(10):1475–85. https://doi.org/10.1007/s00231-015-1515-5.

    Article  Google Scholar 

  38. ANSYS FLUENT theory guide. Canonsburg: ANSYS Inc.; 2018.

  39. Phu NM, Tuyen V, Ngo TT. Augmented heat transfer and friction investigations in solar air heater artificially roughened with metal shavings. J Mech Sci Technol. 2019;33(7):3521–9. https://doi.org/10.1007/s12206-019-0646-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Minh Phu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, T.T., Phu, N.M. Computational fluid dynamics analysis of the heat transfer and pressure drop of solar air heater with conic-curve profile ribs. J Therm Anal Calorim 139, 3235–3246 (2020). https://doi.org/10.1007/s10973-019-08709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08709-4

Keywords

Navigation