Skip to main content
Log in

Effect of MWCNT content on thermal and shape memory properties of epoxy nanocomposites as material for morphing wing skin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, a shape memory epoxy polymer (SMEP) system was prepared from commercially available EPON 826 and NGDE, and then, 0.5%, 1.0% and 1.5% mass percentage of multi-walled carbon nanotubes (MWCNTs) were incorporated into it so as to prepare nanocomposites. The inclusion of the nanofiller into the SMEP system was expected to enhance its properties. Then, experimental analyses were conducted to study the effect of incorporating different amounts of MWCNTs on the thermal properties of the obtained nanocomposites, namely dynamic mechanical analysis, thermogravimetric analysis (TGA) and shape memory cyclic testing. It was found that the increasing content of MWCNTs in the SMEP system decreased the glass transition temperature of the developed nanocomposites (SMEPCs). TGA results indicated that the incorporation of MWCNTs into the SMEP decreased its thermal stability. The authors explained these results by the lack of interaction between the MWCNTs and the epoxy matrix. In consideration of the use of the SMEP for morphing applications, the increment in MWCNT content was found to improve the shape recovery properties of the SMEP. Thus, the study demonstrates that the incorporation of a MWCNT nanofiller can help enhance the properties of the SMEP system and overcome its limitations, revealing the high potential of the developed shape memory composite materials to be used for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem. 2007;17:1543.

    Article  CAS  Google Scholar 

  2. Chang L-C, Read TA, Wechsler MS. Reversible single-crystal rocking-curve broadening. Acta Crystallogr. 1953;6:567.

    Article  CAS  Google Scholar 

  3. Hitov JJ, Rainer WC, Redding EM, Sloan AW, Stewart WD. Polyethylene product and process. Google Patents; 1964. https://www.google.com/patents/US3144398.

  4. Edward WP. Process and apparatus for producing plastic memory articles. Google Patents; 1968. https://www.google.com/patents/US3370112.

  5. Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, et al. Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol (N Y N Y). 2006;50:599–610.

    Article  CAS  Google Scholar 

  6. Kim SH, Lee WI, Park JM. Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry. Carbon N Y. 2009;47:2699–703. https://doi.org/10.1016/j.carbon.2009.05.026.

    Article  CAS  Google Scholar 

  7. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  8. Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos Part A Appl Sci Manuf. 2004;35:1225–32.

    Article  Google Scholar 

  9. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Appl Phys Lett. 2002;80:2767–9.

    Article  CAS  Google Scholar 

  10. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer (Guildf). 2003;44:5893–9.

    Article  CAS  Google Scholar 

  11. Gardea F, Lagoudas DC. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos Part B Eng. 2014;56:611–20. https://doi.org/10.1016/j.compositesb.2013.08.032.

    Article  CAS  Google Scholar 

  12. Abishera R, Velmurugan R, Gopal KVN. Reversible plasticity shape memory effect in carbon nanotubes reinforced epoxy nanocomposites. Compos Sci Technol. 2016;137:148–58.

    Article  CAS  Google Scholar 

  13. Liu Y, Zhao J, Zhao L, Li W, Zhang H, Yu X, et al. High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl Mater Interfaces. 2016;8:34744–54.

    Article  Google Scholar 

  14. Kikuta MT. Mechanical properties of candidate materials for morphing wings. Blacksburg: Virginia Polytechnic Institute and State University; 2003.

    Google Scholar 

  15. Gross KE. Mechanical characterization of shape memory polymers to assess candidacy as morphing aircraft skin. Pittsburgh: University of Pittsburgh; 2008.

    Google Scholar 

  16. Thill C, Etches J, Bond I, Potter K, Weaver P. Morphing skins. Aeronaut J. 2008;112:117–39.

    Article  Google Scholar 

  17. Yu K, Yin W, Sun S, Liu Y, Leng J. Design and analysis of morphing wing based on SMP composite. Ind Commer Appl Smart Struct Technol. 2009;7290:72900S–72900S–8.

    Google Scholar 

  18. Yin W, Liu J, Leng J. Deformation analysis of shape memory polymer for morphing wing skin under airflow. Front Mech Eng China. 2009;4:447–9.

    Article  Google Scholar 

  19. Leng J, Yu K, Sun J, Liu Y. Deployable morphing structure based on shape memory polymer. Aircr Eng Aerosp Technol. 2015;87:218–23.

    Article  Google Scholar 

  20. Gong X, Liu L, Scarpa F, Leng J, Liu Y. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications. Smart Mater Struct. 2017. https://doi.org/10.1088/1361-665X/aa516d.

    Article  Google Scholar 

  21. Keihl MM, Bortolin RS, Sanders B, Joshi S, Tidwell Z. Mechanical properties of shape memory polymers for morphing aircraft applications. Proc SPIE. 2005;5762:143–51.

    Article  CAS  Google Scholar 

  22. Yin W, Sun QJ, Zhang B, Liu JC, Leng JS. Seamless morphing wing with SMP skin. Adv Mater Res. 2008;47–50:97–100.

    Article  Google Scholar 

  23. Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed. 2002;41:2034–57.

    Article  CAS  Google Scholar 

  24. Xie T, Rousseau IA. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer (Guildf). 2009;50:1852–6. https://doi.org/10.1016/j.polymer.2009.02.035.

    Article  CAS  Google Scholar 

  25. Lau KT, Lu M, Lam CK, Cheung HY, Sheng FL, Li HL. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol. 2005;65:719–25.

    Article  CAS  Google Scholar 

  26. Chen T. Characterization of shape memory polymers by DMA. TA Instruments; pp 1–4. http://www.tainstruments.com/pdf/literature/TA374.pdf. Accessed 5 Nov 2017.

  27. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K. Physical interactions at carbon nanotube-polymer interface. Polymer (Guildf). 2003;44:7757–64.

    Article  CAS  Google Scholar 

  28. Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater. 2000;12:1049–52.

    Article  CAS  Google Scholar 

  29. Spitalsky Z, Matejka L, Slouf M, Konyushenko EN, Kovarova J, Zemek J, et al. Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos. 2009;16:101–13.

    Google Scholar 

  30. Yu K, Liu Y, Leng J. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 2014;4:2961–8.

    Article  CAS  Google Scholar 

  31. Liao YH, Marietta-Tondin O, Liang Z, Zhang C, Wang B. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A. 2004;385:175–81.

    Article  Google Scholar 

  32. Ciecierska E, Boczkowska A, Kurzydlowski KJ, Rosca ID, Van Hoa S. The effect of carbon nanotubes on epoxy matrix nanocomposites. J Therm Anal Calorim. 2013;111:1019–24.

    Article  CAS  Google Scholar 

  33. Loos MR, Coelho LAF, Pezzin SH, Amico SC. Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mater Res. 2008;11:347–52.

    Article  CAS  Google Scholar 

  34. Shi S, Shen D, Xu T. Programming effects on thermal decomposition of shape memory polymer-based composites. J Therm Anal Calorim. 2017;130:1953–60.

    Article  CAS  Google Scholar 

  35. Shahabadi SIS, Garmabi H. Qualitative assessment of nanoclay dispersion using thermogravimetric analysis: a response surface study. J Thermoplast Compos Mater. 2012;27:498–517.

    Article  Google Scholar 

  36. Abishera R, Velmurugan R, Gopal KVN. Reversible plasticity shape memory effect in epoxy/CNT nanocomposites—a theoretical study. Compos Sci Technol. 2017;141:145–53. https://doi.org/10.1016/j.compscitech.2017.01.020.

    Article  CAS  Google Scholar 

  37. Xu B, Fu YQ, Ahmad M, Luo JK, Huang WM, Kraft A, et al. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites. J Mater Chem. 2010;20:3442–8.

    Article  CAS  Google Scholar 

  38. Mogharebi S, Kazakeviciute-Makovska R, Steeb H, Eggeler G, Neuking K. On the cyclic material stability of shape memory polymer. Materwiss Werksttech. 2013;44:521–6.

    Article  Google Scholar 

  39. McClung AJW, Tandon GP, Baur JW. Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mech Time Depend Mater. 2013;17:39–52.

    Article  CAS  Google Scholar 

  40. Liu Y, Du H, Liu L, Leng J. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct. 2014;23:023001.

    Article  Google Scholar 

  41. Sun J, Liu Y, Leng J. Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins. J Intell Mater Syst Struct. 2015;26:2020–7.

    Article  CAS  Google Scholar 

  42. Sun J, Gong X, Liu Y, Leng J. Research on a variable camber wing with shape memory polymer skin. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 2013. p. 1–9.

  43. Wang W, Liu Y, Leng J. Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev. 2016;320–321:38–52. https://doi.org/10.1016/j.ccr.2016.03.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by UPM under GP-IPS Grant, 9647200. The authors would like to express their gratitude and sincere appreciation to Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, and Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (HiCOE), for the close collaboration in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. H. Sultan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mat Yazik, M.H., H. Sultan, M.T., M. Shah, A.U. et al. Effect of MWCNT content on thermal and shape memory properties of epoxy nanocomposites as material for morphing wing skin. J Therm Anal Calorim 139, 147–158 (2020). https://doi.org/10.1007/s10973-019-08367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08367-6

Keywords

Navigation