Skip to main content
Log in

Thermal and nonlinear optical properties of Tm3+-doped tellurite glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, thermal and nonlinear properties of tellurite glasses doped with Tm2O3 were investigated by means of thermal lens, thermal relaxation and z-scan measurements. The composition of the samples was (78 − x) TeO2 + 4.5 Bi2O3 + 5.5 ZnO + 10.5 Li2O + 1.5 Nb2O5 + xTm2O3 (x = 0.05, 0.1, 0.5, 1.0 and 1.5 mol%). Thermal diffusivity (D), specific heat (ρc), thermal conductivity (K) and optical path change with temperature (ds/dT) were determined as a function of Tm3+ concentration. Concerning thermal–optical properties, our results show that the 0.5 mol% Tm doped is the most suitable sample for laser applications as it presented the lowest ds/dT and highest thermal diffusivity (conductivity). Third-order nonlinearities were observed and discussed in 1.0 and 1.5 mol% samples. The nonlinear indices (n2) found were 1.16 × 10−13 and 3.89 × 10−13 cm2 W−1, respectively. The data obtained show that the Tm3+-doped TBZLN glasses have potential for future opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gomes L, Milanese D, Lousteau J, Boetti N, Jackson SD. Energy level decay processes in Ho3 + -doped tellurite glass relevant to the 3 μm transition. J Appl Phys. 2011;109:103110–6.

    Google Scholar 

  2. Moraes JCS, Nardi JA, Sidel SM, Mantovani BG, Yukimitu K, Reynoso VCS, Malmonge LF, Ghofraniha N, Ruocco G, Andrade LHC, Lima SM. Relation among optical, thermal and thermo-optical properties and niobium concentration in tellurite glasses. J Non-Cryst Solids. 2010;356:2146–50.

    CAS  Google Scholar 

  3. Reben M, Yousef ES, Grelowska I, Kosmal M, Szumera M. Influence of modifiers on the thermal characteristic of glasses of the TeO2–P2O5–ZnO–PbF2 system. J Therm Anal Calorim. 2016;125:1279–86.

    CAS  Google Scholar 

  4. Moreira LM, Anjos V, Bell MJV, Ramos CAR, Kassab LRP, Doualan DJL, Camy P, Moncorgé R. The effects of Nd2O3 concentration in the laser emission of TeO2–ZnO glasses. Opt Mater. 2016;58:84–8.

    CAS  Google Scholar 

  5. Bell MJV, Anjos V, Moreira LM, Falci RF, Kassab LRP, da Silva DS, Doualan JL, Camy P, Moncorgé R. Laser emission of a Nd-doped mixed tellurite and zinc oxide glass. J Opt Soc Am B. 2014;31(7):1590–4.

    CAS  Google Scholar 

  6. Mosner P, Vosejpková K, Koudelka L, Benes L. Thermal studies of ZnO–B2O3–P2O5–TeO2 glasses. J Therm Anal Calorim. 2012;107:1129–35.

    CAS  Google Scholar 

  7. Cankaya H, Gorgulu AT, Kurt A, Speghini A, Bettinelli M, Sennaroglu A. Comparative spectroscopic investigation of Tm3+: tellurite glasses for 2-μm lasing applications. Appl Sci. 2018;8:310–33.

    Google Scholar 

  8. Seshadri M, Barbosa LC, Radha M. Study on structural, optical and gain properties of 1.2 and 2.0 μm emission transitions in Ho3+ doped tellurite glasses. J Non-Cryst Solids. 2014;406:62–72.

    CAS  Google Scholar 

  9. Seshadri M, Anjos V, Bell MJV, Barbosa LC, Bosco GBF, Tessler LR, Suresh Kumar J, Graça MPF, Soares M, Radha M, Ratnakaram YC. Doped tellurite glasses: extending near-infrared emission for near 2.0-μm amplifiers. Inter J Appl Glass Sci. 2017;8(2):216–25.

    CAS  Google Scholar 

  10. Fan H, Gao G, Wang G, Hu J, Hu L. Tm3 + doped Bi2O3–GeO2–Na2O glasses for 1.8 μm fluorescence. Opt Mater. 2010;32:627–31.

    CAS  Google Scholar 

  11. Fan TY. Heat generation in Nd:YAG and Yb:YAG. IEEE J Quantum Electron. 1993;29:1457–9.

    CAS  Google Scholar 

  12. Jacinto C, Oliveira SL, Nunes LAO, Myers JD, Myers MJ, Catunda T. Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3 + -doped glasses. Phys Rev B. 2006;73:125107–9.

    Google Scholar 

  13. Carmo AP, Bell MJV, Anjos V, de Almeida RM, da Silva D, Kassab LRP. Thermo-optical properties of tellurite glasses doped with Eu3+ and Au nanoparticles. J Phys D Appl Phys. 2009;42:155404–5.

    Google Scholar 

  14. Kassab LRP, Kobayashi RA, Bell MJV, Carmo AP, Catunda T. Thermo-optical parameters of tellurite glasses doped with Yb3+. J Phys D Appl Phys. 2007;40:4073–7.

    CAS  Google Scholar 

  15. Serqueira EO, Dantas NO, Silva GH, Anjos V, Bell MJV, Pereira da Silva MA. Thermal diffusivity of a SNAB glass system doped with CdS nanocrystals and Nd3+. Chem Phys Lett. 2011;504:67–70.

    CAS  Google Scholar 

  16. Lima SM, Catunda T, Lebullenger R, Hernandes AC, Baesso ML, Bento AC, Miranda LCM. Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry. Phys Rev B. 1991;60(22):15173–8.

    Google Scholar 

  17. Moreira LM, Carvalho EA, Bell MJV, Anjos V, Sant Ana AC, Alves APP, Fragneaud B, Sena LA, Archanjo BS, Achete CA. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim. 2013;114:557–64.

    CAS  Google Scholar 

  18. Kesavulua CR, Suresh K, dos Santos JFM, Catunda T, Kim HJ, Jayasankar CK. Spectroscopic investigations of 1.06 µm emission and time resolved Z-scan studies in Nd3+-doped zinc tellurite based glasses. J Lumin. 2017;192:1047–55.

    Google Scholar 

  19. Silva AP, Carmo AP, Anjos V, Bell MJV, Kassab LRP, de Almeida Pinto R. Temperature coefficient of optical path of tellurite glasses doped with gold nanoparticles. Opt Mater. 2011;34:239–43.

    CAS  Google Scholar 

  20. Anjos V, Bell MJV, de Vasconcelos EA, da Silva EF Jr, Andrade AA, Franco RWA, Castro MPP, Esquef IA, Faria RT Jr. Thermal-lens and photo-acoustic methods for the determination of SiC thermal properties. J Microelectron. 2005;36:977–80.

    CAS  Google Scholar 

  21. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron. 1990;26:760–9.

    CAS  Google Scholar 

  22. Sharaf El-Deen LM, Al Salhi MS, Elkholy MM. IR and UV spectral studies for rare earths-doped tellurite glasses. J Alloy Compd. 2008;465:333–9.

    Google Scholar 

  23. Ming Oo H, Mohamed-Kamari H, Mohd Daud W, Yusoff W. Optical properties of bismuth tellurite based glass. Int J Mol Sci. 2012;13:4623–31.

    Google Scholar 

  24. Chen Y, Nie Q, Xu T, Dai S, Wang X, Shen X. A study of nonlinear optical properties in Bi2O3–WO3–TeO2 glasses. J Non-Cryst Solids. 2008;354:3468–72.

    CAS  Google Scholar 

  25. Davis EA, Mott NF. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag. 1970;22:0903–22.

    CAS  Google Scholar 

  26. Aw SE, Tan HS, Ong CK. Optical absorption measurements of band-gap shrinkage in moderately and heavily doped silicon. J Phys Condens Matter. 1991;3:8213–23.

    CAS  Google Scholar 

  27. Zamyatin OA, Churbanov MF, Medvedeva JA, Gavrin SA, Zamyatina EV, Plekhovich AD. Glass-forming region and optical properties of the TeO2–ZnO–NiO system. J Non-Cryst Solids. 2018;479:29–41.

    CAS  Google Scholar 

  28. Zamyatin OA, Churbanov MF, Plotnichenko VG, Zamyatina EV. Optical properties of the MoO3–TeO2 glasses doped with Ni2+-ions. J Non-Cryst Solids. 2018;480:74–80.

    CAS  Google Scholar 

  29. Gayathri Pavani P, Sadhana K, Chandra Mouli V. Optical, physical and structural studies of boro-zinc tellurite glasses. Phys B. 2011;406:1242–7.

    CAS  Google Scholar 

  30. Lima SM, Falco WF, Bannwart ES, Andrade LHC, de Oliveira RC, Moraes JCS, Yukimitu K, Araujo EB, Falcao EA, Steimacher A, Astrath NGC, Bento AC, Medina AN, Baesso ML. Thermo-optical characterization of tellurite glasses by thermal lens, thermal relaxation calorimetry and interferometric methods. J Non-Cryst Solids. 2006;352:3603–7.

    CAS  Google Scholar 

  31. Pinheiro AS, da Costa ZM, Bell MJV, Anjos V, Reis ST, Ray CS. Thermal characterization of glasses prepared from simulated compositions of lunar soil JSC-1A. J Non-Cryst Solids. 2013;359:56–9.

    CAS  Google Scholar 

  32. Pinheiro AS, da Costa ZM, Bell MJV, Anjos V, Dantas NO, Reis ST. Thermal characterization of iron phosphate glasses for nuclear waste disposal. Opt Mater. 2011;33:1975–9.

    CAS  Google Scholar 

  33. Valiente H, Delgado-Vasallo O, Abdelarrague R, Calderon A, Marin E. Specific heat measurements by a thermal relaxation method: influence of convection and conduction. Inter J Ther Phys. 2006;27(6):1859–72.

    CAS  Google Scholar 

  34. Pelle F, Gardant N, Auzel F. Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions. J Opt Soc Am B. 1998;15(2):667–79.

    CAS  Google Scholar 

  35. Zeller RC, Pohl RO. Thermal conductivity and specific heat of noncrystalline solids. Phys Rev B. 1977;4(6):2029–41.

    Google Scholar 

  36. Mansanares M, Baesso ML, Silva EC, Gandra FCG, Vargas H, Miranda LCM. Photoacoustic and ESR studies of iron-doped soda-lime glasses: thermal diffusivity. Phys Rev B. 1989;40:7912–5.

    CAS  Google Scholar 

  37. Campbell JH, Suratwala TI, Thorsness CB, Hayden JS, Thorne AJ, Cimino JM, Marker AJ, Takeuchi K, Smolley M, Ficini-Dorn GF. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J Non-Cryst Solids. 2000;263&264:318–41.

    CAS  Google Scholar 

  38. Clementi A, Chiodini N, Paleari A. Cubic optical nonlinearity in nanostructured SnO2:SiO2. Appl Phys Lett. 2004;84:960–2.

    CAS  Google Scholar 

  39. Moreira L, Falci RF, Darabian H, Anjos V, Bell MJV, Kassab LRP, Bordon CDS, Doualan JL, Camy P, Moncorge R. The effect of excitation intensity variation and silver nanoparticle co-doping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast Z-scan spectroscopy. Opt Mater. 2018;79:397–402.

    CAS  Google Scholar 

  40. Chen F, Xu T, Dai S, Nie Q, Shen X, Zhang J, Wang X. Linear and non-linear characteristics of tellurite glasses within TeO2–Bi2O3–TiO2 ternary system. Opt Mater. 2010;32:868–72.

    CAS  Google Scholar 

  41. Yousef E, Hotzel M, Russel C. Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses. J Non-Cryst Solids. 2007;353:333–8.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Brazilian Funding Agencies: CNPq, CAPES and FAPEMIG. M. Seshadri thanks the support of Physics Department—UFJF by the PNPD-CAPES Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Seshadri or V. Anjos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seshadri, M., Radha, M., Darabian, H. et al. Thermal and nonlinear optical properties of Tm3+-doped tellurite glasses. J Therm Anal Calorim 138, 2971–2978 (2019). https://doi.org/10.1007/s10973-019-08344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08344-z

Keywords

Navigation