Skip to main content
Log in

Effect of iron poly(acrylic acid-co-acrylamide) and melamine polyphosphate on the flammability properties of linear low-density polyethylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Iron poly(acrylic acid-co-acrylamide) (FeAA) and melamine polyphosphate (MPP) were synthesized, characterized by FTIR and blended with linear low-density polyethylene (LLDPE). The thermogravimetric analysis results exhibited that MPP, FeAA and MPP/FeAA increased the char residue of LLDPE at 750 °C. Cone calorimeter data demonstrated that MPP, FeAA and MPP/FeAA decreased the peak of heat release rate (pHRR) and total heat release of LLDPE. Digital photographs, SEM images, EDXS and FTIR analyses of char formed after cone test indicated that the presence of FeAA did not support formation of coherent char during combustion process of LLDPE. In contrast, LLDPE/MPP composite formed high-quality char layer on polymer surface. Moreover, addition of MPP to LLDPE/FeAA composites assisted in formation of char containing iron polyphosphate and polyaromatic structure. The mechanical properties, namely tensile strength, Young’s modulus, elongation at break and hardness of LLDPE composites, were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie F, Wang YZ, Yang B, Liu Y. A novel intumescent flame-retardant polyethylene system. Macromol Mater Eng. 2006;291:247–53.

    Article  CAS  Google Scholar 

  2. Cao Z, Zhang Y, Song P, Cai Y, Guo Q, Fang Z, Peng M. A novel zinc chelate complex containing both phosphorus and nitrogen for improving the flame retardancy of low density polyethylene. J Anal Appl Pyrolysis. 2011;92:339–46.

    Article  CAS  Google Scholar 

  3. Hassan M, Nour M, Abdelmonem Y, Makhlouf G, Abdelkhalik A. Synergistic effect of chitosan-based flame retardant and modified clay on the flammability properties of LLDPE. Polym Degrad Stab. 2016;133:8–15.

    Article  CAS  Google Scholar 

  4. Morgan AB. A review of transition metal-based flame retardants: transition metal oxide/salts, and complexes. In: ACS symposium series—fire and polymers V: materials and concepts for fire retardancy, Oxford University Press; 2009. pp. 312–328.

  5. Hirschler MM. Thermal analysis and flammability of polymers effect of halogen-metal additive systems. Eur Polym J. 1983;19:121–9.

    Article  CAS  Google Scholar 

  6. Holcik J, Kosik M, Benbow AW, Cullis CF. The oxidative thermal degradation of polypropylene and the influence of transition metal chelates. Eur Polym J. 1978;14:769–72.

    Article  CAS  Google Scholar 

  7. Benbow AW, Cullis CF, Laver HS. Effects of metal chelates on the oxidation of polyolefins at high temperatures. Polymer. 1978;19:824–8.

    Article  CAS  Google Scholar 

  8. Ranaweera RPR, Gerald S. Mechanisms of antioxidant action antioxidant behaviour of nickel complex UV stabilisers. Eur Polym J. 1976;12:825–30.

    Article  CAS  Google Scholar 

  9. Cullis CF, Hirschler MM. Char formation from polyolefins correlations with low-temperature oxygen uptake and with flammability in the presence of metal-halogen systems. Eur Polym J. 1984;20:53–60.

    Article  CAS  Google Scholar 

  10. Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol. 2003;14:3–11.

    Article  CAS  Google Scholar 

  11. Hassan MA, Shehata AB. The effect of some polymeric metal chelates on the flammability properties of polypropylene. Polym Degrad Stab. 2004;85(1):733–40.

    Article  CAS  Google Scholar 

  12. Hassan MA. Effect of incorporation of butyl acrylate–iron chelate resin on the flammability properties of mg(oh)2-LDPE compositions. Polym Plast Technol Eng. 2004;43(5):1487–501.

    Article  CAS  Google Scholar 

  13. Abd El-wahab H, Abd El-fattah M, Ahmed AH, Elhenawy AA, Alian NA. Synthesis and characterization of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating. J Organomet Chem. 2015;791:99–106.

    Article  CAS  Google Scholar 

  14. Wang DY, Liu Y, Ge XG, Wang YZ, Stec A, Biswas B, Hull TR, Price D. Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polym Degrad Stab. 2008;93:1024–30.

    Article  CAS  Google Scholar 

  15. Xie J, Liu X, Liang J. Absorbency and adsorption of poly(acrylic acid-co-acrylamide) hydrogel. J Appl Polym Sci. 2007;106:1606–13.

    Article  CAS  Google Scholar 

  16. Duran S, Solpan D, Gueven O. Synthesis and characterization of acrylamide ± acrylic acid hydrogels and adsorption of some textile dyes. Nucl Instrum Methods Phys Res. 1999;B151:196–9.

    Article  Google Scholar 

  17. Fu X, Liu Y, Wang Q, Zhang Z, Wang Z, Zhang J. Novel synthesis method for melamine polyphosphate and its flame retardancy on glass fiber reinforced polyamide. Polym Plast Technol Eng. 2011;50:1527–32.

    Article  CAS  Google Scholar 

  18. Cichy B, Łuczkowska D, Nowak M, Władyka-przybylak M. Polyphosphate flame retardants with increased heat resistance. Ind Eng Chem Res. 2003;42:2897–905.

    Article  CAS  Google Scholar 

  19. Nowak M, Cichy B. Kinetics of melamine phosphate thermal decomposition in DSC studies. J Therm Anal Calorim. 2016;126(1):277–85.

    Article  CAS  Google Scholar 

  20. Lubczak J, Lubczak R. Melamine polyphosphate—the reactive and additive flame retardant for polyurethane foams. Acta Chim Slov. 2016;63:77–87.

    Article  CAS  Google Scholar 

  21. Braun U, Schartel B, Fichera MA, Ja C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab. 2007;92:1528–45.

    Article  CAS  Google Scholar 

  22. Li L, Guo W, Guo C. Synergistic effect of melamine polyphosphate and aluminum hypophosphite on mechanical properties and flame retardancy of HDPE/wood flour composites. Wood Sci Technol. 2017;51:493–506.

    Article  CAS  Google Scholar 

  23. Nyambo C, Kandare E, Wilkie CA. Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polym Degrad Stab. 2009;94:513–20.

    Article  CAS  Google Scholar 

  24. Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohydr Polym. 2015;130:227–32.

    Article  CAS  Google Scholar 

  25. Huang G, Liang H, Wang Y, Wang X, Gao J, Fei Z. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater Chem Phys. 2012;132:520–8.

    Article  CAS  Google Scholar 

  26. Zhao P, Guo C, Li L. Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites. Constr Build Mater. 2018;170:193–9.

    Article  CAS  Google Scholar 

  27. Makhlouf G, Hassan M, Nour M, Abdelmonem Y, Abdelkhalik A. A novel intumescent flame retardant: synthesis and its application for linear low-density polyethylene. Arab J Sci Eng. 2017;42:4339–49.

    Article  CAS  Google Scholar 

  28. Makhlouf G, Hassan M, Nour M, Abdel-Monem YK, Abdelkhalik A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J Therm Anal Calorim. 2017;130:1031–41.

    Article  CAS  Google Scholar 

  29. Dayanand C, Bhikshamaiah G, Tyagaraju VJ, Salagram M. Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)−(1−x) P2O5 vitreous system. J Mater Sci. 1996;31:1945–67.

    Article  CAS  Google Scholar 

  30. Nesrinne S, Djamel A. Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem. 2017;10:539–47.

    Article  CAS  Google Scholar 

  31. Dweik H, Sultan W, Sowwan M. Analysis characterization and some properties of polyacrylamide copper complexes. Int J Polym Mater. 2008;57:228–44.

    Article  CAS  Google Scholar 

  32. Magalhães ASG, Neto MPA, Bezerra MN, Ricardo NMPS, Feitosa JPA. Application of FTIR in the determination of acrylate content in poly(sodium acrylateco-acrylamide) superabsorbent hydrogels. Quim Nova. 2012;35:1464–7.

    Article  Google Scholar 

  33. Shi E, Choo G, Tang X, Sheng Y, Xue J. Controlled loading of superparamagnetic nanoparticles in fluorescent nanogels as effective T2-weighted MRI contrast agents. J Mater Chem. 2011;21:2310–9.

    Article  Google Scholar 

  34. Vflcu R, Bujor II, Olteanu M, Demetrescu I. Thermal stability of copolymer acrylamide-maleic anhydride. J Appl Polym Sci. 1987;33:2431–7.

    Article  Google Scholar 

  35. Sheng HU, Fei C, Junguo L, Qiang S, Lianmeng Z. Influencing mechanism and interaction of muscovite on thermal decomposition of ammonium polyphosphate. J Wuhan Univ Technol Mater Sci Ed. 2016;31(2):334–9.

    Article  CAS  Google Scholar 

  36. Wang J, Wang D, Liu Y, Ge X, Wang Y. Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J Appl Polym Sci. 2008;108:2644–53.

    Article  CAS  Google Scholar 

  37. Zhang Y, Li X, Fang Z, Hull TR, Kelarakis A, Stec AA. Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene. Polym Degrad Stab. 2017;136:139–45.

    Article  CAS  Google Scholar 

  38. He Z, Honeycutt CW, Zhang T, Bertsch PM. Preparation and FT–IR characterization of metal phytate compounds. J Environ Qual. 2006;35:1319–28.

    Article  CAS  Google Scholar 

  39. Callister WD, David G. Materials science and engineering: an introduction. 5th ed. Hoboken: Wiley; 2000.

    Google Scholar 

  40. Ishiaku US, Pang KW, Lee WS, Ishak Z. Mechanical properties and enzymatic degradation of thermoplastic and granular sago starch filled poly(ε-caprolactone). Eur Polym J. 2002;38(2):393–401.

    Article  CAS  Google Scholar 

  41. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC. Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender Polym. Degrad Stab. 2013;98(2):643–50.

    Article  CAS  Google Scholar 

  42. Jamal NA, Anuar H, Bahri ARS. The influence of EB-irradiated treatment on enhancing barrier property and crystallization behavior of rubber-toughened nanocomposites. J Nanotechnol. 2011;2011:1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aksam Abdelkhalik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkhalik, A., Abdel-Hakim, A., Makhlouf, G. et al. Effect of iron poly(acrylic acid-co-acrylamide) and melamine polyphosphate on the flammability properties of linear low-density polyethylene. J Therm Anal Calorim 138, 1021–1031 (2019). https://doi.org/10.1007/s10973-019-08293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08293-7

Keywords

Navigation