Skip to main content
Log in

Machinability improvement in Inconel-718 by enhanced tribological and thermal environment using textured tool

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Machinability of Inconel-718 superalloy in conventional approach is poor—this fact necessitates advanced technological adoption such as improved surface topography over used cutting tool. Recently, the performance of textured tool has been investigated to explore its potential benefits in achieving favourability in machining of superalloy. In that context, the impact of tool texturing, cutting speed and machining time on some of the prominent machinability indices like cutting forces, tool wear, surface finish and chip morphology has been deliberately investigated. The performance comparison of non-textured and textured tool has been conducted at cutting speed of 80, 120 and 180 m min−1 and at successive increment of machining times up to 10 min. Moreover, the scanning electron microscope analysis of worn tool edges was carried out to comprehend the wear mechanism. Furthermore, the thermal analysis was done for dedicated textured tooling condition. Results revealed that the textured tool performs better to ensure lower tool wear (VB), reduced cutting forces (Fc), lower surface roughness (Ra) and acceptable form of chips. The spots of textured tool acted as fins to promote efficient heat transfer from cutting zone and reduced the effective chip–tool contact length to cause less friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bansal A, Sharma AK, Das S, Kumar P. On microstructure and strength properties of microwave welded Inconel 718/stainless steel (SS-316L). Proc Inst Mech Eng Part L J Mater Des Appl. 2015;230:939–48. https://doi.org/10.1177/1464420715589206.

    Article  CAS  Google Scholar 

  2. Bhopale NN, Pawade RS, Joshi SS. Surface quality analysis in ball end milling of Inconel 718 cantilevers by response surface methodology. Proc Inst Mech Eng Part B J Eng Manuf. 2015;231:628–40. https://doi.org/10.1177/0954405415600140.

    Article  CAS  Google Scholar 

  3. Unune DR, Mali HS. Experimental investigation on low-frequency vibration-assisted µ-ED milling of Inconel 718. Mater Manuf Process. 2018;33:964–76. https://doi.org/10.1080/10426914.2017.1388516.

    Article  CAS  Google Scholar 

  4. Singh G, Gupta MK, Mia M, Sharma VS. Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int J Adv Manuf Technol. 2018;97:481–94. https://doi.org/10.1007/s00170-018-1911-3.

    Article  Google Scholar 

  5. Moon S-H, Lee C-M. A study on the machining characteristics using plasma assisted machining of AISI 1045 steel and Inconel 718. Int J Mech Sci. 2018;142–143:595–602.

    Article  Google Scholar 

  6. Antonialli AÍS, Magri A, Diniz AE. Tool life and tool wear in taper turning of a nickel-based superalloy. Int J Adv Manuf Technol. 2016;87:2023–32. https://doi.org/10.1007/s00170-016-8568-6.

    Article  Google Scholar 

  7. Sarıkaya M, Güllü A. Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod. 2015;91:347–57.

    Article  Google Scholar 

  8. Yıldırım ÇV, Kıvak T, Sarıkaya M, Erzincanlı F. Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloy waspaloy. Arab J Sci Eng. 2017;42:4667–81. https://doi.org/10.1007/s13369-017-2594-z.

    Article  CAS  Google Scholar 

  9. Sarıkaya M, Yılmaz V, Güllü A. Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy. J Clean Prod. 2016;133:172–81.

    Article  Google Scholar 

  10. Anamalai K, Samylingam L, Kadirgama K, Samykano M, Najafi G, Ramasamy D, et al. Multi-objective optimization on the machining parameters for bio-inspired nanocoolant. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7693-x.

    Article  Google Scholar 

  11. Mia M. Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition. Measurement. 2017;111:134–45.

    Article  Google Scholar 

  12. Gupta M, Pruncu C, Mia M, Singh G, Singh S, Prakash C, et al. Machinability investigations of Inconel-800 super alloy under sustainable cooling conditions. Materials (Basel). 2018;11:2088.

    Article  Google Scholar 

  13. Mia M, Singh G, Gupta MK, Sharma VS. Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precis Eng. 2018;53:289–99.

    Article  Google Scholar 

  14. Mia M, Gupta MK, Singh G, Królczyk G, Pimenov DY. An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod. 2018;187:1069–81.

    Article  CAS  Google Scholar 

  15. Mia M, Morshed MS, Kharshiduzzaman M, Razi MH, Mostafa MR, Rahman SMS, et al. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel. Measurement. 2018;118:43–51.

    Article  Google Scholar 

  16. Jesudass Thomas S, Kalaichelvan K. Comparative study of the effect of surface texturing on cutting tool in dry cutting. Mater Manuf Process. 2018;33:683–94. https://doi.org/10.1080/10426914.2017.1376070.

    Article  CAS  Google Scholar 

  17. Dinesh S, Senthilkumar V, Asokan P. Experimental studies on the cryogenic machining of biodegradable ZK60 Mg alloy using micro-textured tools. Mater Manuf Process. 2017;32:979–87. https://doi.org/10.1080/10426914.2016.1221096.

    Article  CAS  Google Scholar 

  18. Thiyagu M, Karunamoorthy L, Arun Kumar N. Magnetorheological fluid-based nanotexturing of tool inserts for turning of duplex stainless steel. Mater Manuf Process. 2017;32:1019–25. https://doi.org/10.1080/10426914.2016.1257136.

    Article  CAS  Google Scholar 

  19. Sharma V, Pandey PM. Comparative study of turning of 4340 hardened steel with hybrid textured self-lubricating cutting inserts. Mater Manuf Process. 2016;31:1904–16. https://doi.org/10.1080/10426914.2015.1127951.

    Article  CAS  Google Scholar 

  20. Arulkirubakaran D, Senthilkumar V, Kumawat V. Effect of micro-textured tools on machining of Ti–6Al–4V alloy: an experimental and numerical approach. Int J Refract Met Hard Mater. 2016;54:165–77.

    Article  CAS  Google Scholar 

  21. Lei S, Devarajan S, Chang Z. A study of micropool lubricated cutting tool in machining of mild steel. J Mater Process Technol. 2009;209:1612–20.

    Article  CAS  Google Scholar 

  22. Obikawa T, Kamio A, Takaoka H, Osada A. Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf. 2011;51:966–72.

    Article  Google Scholar 

  23. Sugihara T, Enomoto T, Yukinaga S. Improving tool wear resistance in steel cutting by textured surface and its mechanism. Adv Mater Res. 2012;565:424–9.

    Article  CAS  Google Scholar 

  24. Xie J, Luo MJ, Wu KK, Yang LF, Li DH. Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int J Mach Tools Manuf. 2013;73:25–36.

    Article  Google Scholar 

  25. Koshy P, Tovey J. Performance of electrical discharge textured cutting tools. CIRP Ann. 2011;60:153–6.

    Article  Google Scholar 

  26. Ma J, Duong NH, Lei S. Numerical investigation of the performance of microbump textured cutting tool in dry machining of AISI 1045 steel. J Manuf Process. 2015;19:194–204.

    Article  Google Scholar 

  27. Kim DM, Lee I, Kim SK, Kim BH, Park HW. Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process. J Mater Process Technol. 2016;229:160–71.

    Article  Google Scholar 

  28. Gupta MK, Sood PK, Sharma VS. Investigations on surface roughness measurement in minimum quantity lubrication turning of titanium alloys using response surface methodology and Box-Cox transformation. J Manuf Sci Prod. 2016;16:75–88.

    CAS  Google Scholar 

  29. Mia M, Dhar NR. Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti–6Al–4V. Proc Inst Mech Eng Part B J Eng Manuf. 2017;233:711–26. https://doi.org/10.1177/0954405417737581.

    Article  CAS  Google Scholar 

  30. Gupta MK, Sood PK, Sharma VS. Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater Manuf Process. 2016;31:1671–82. https://doi.org/10.1080/10426914.2015.1117632.

    Article  CAS  Google Scholar 

  31. Gupta MK, Sood PK. Surface roughness measurements in NFMQL assisted turning of titanium alloys: an optimization approach. Friction. 2017;5:155–70.

    Article  CAS  Google Scholar 

  32. Ferreira R, Carou D, Lauro CH, Davim JP. Surface roughness investigation in the hard turning of steel using ceramic tools. Mater Manuf Process. 2016;31:648–52. https://doi.org/10.1080/10426914.2014.995051.

    Article  CAS  Google Scholar 

  33. Delahaigue J, Chatelain J-F, Lebrun G. Machining analysis of unidirectional and bi-directional flax-epoxy composite laminates. Proc Inst Mech Eng Part L J Mater Des Appl. 2017;231:196–209. https://doi.org/10.1177/1464420716671970.

    Article  CAS  Google Scholar 

  34. Mohanty A, Gangopadhyay S, Thakur A. On applicability of multilayer coated tool in dry machining of aerospace grade stainless steel. Mater Manuf Process. 2016;31:869–79. https://doi.org/10.1080/10426914.2015.1070413.

    Article  CAS  Google Scholar 

  35. Madyira DM, Laubscher RF, van Rensburg NJ, Henning PFJ. High speed machining induced residual stresses in Grade 5 titanium alloy. Proc Inst Mech Eng Part L J Mater Des Appl. 2012;227:208–15. https://doi.org/10.1177/1464420712462319.

    Article  CAS  Google Scholar 

  36. Mehta A, Hemakumar S, Patil A, Khandke SP, Kuppan P, Oyyaravelu R, et al. Influence of sustainable cutting environments on cutting forces, surface roughness and tool wear in turning of Inconel 718. Mater Today Proc. 2018;5:6746–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Darshan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darshan, C., Jain, S., Dogra, M. et al. Machinability improvement in Inconel-718 by enhanced tribological and thermal environment using textured tool. J Therm Anal Calorim 138, 273–285 (2019). https://doi.org/10.1007/s10973-019-08121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08121-y

Keywords

Navigation