Skip to main content
Log in

The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The primary decomposition product (TKX-50-M) of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) was obtained under adiabatic condition by using accelerating rate calorimeter (ARC). Meanwhile, diammonium 5,5′-bistetrazole-1,1′-diolate (ABTOX) was confirmed as the main component of TKX-50-M. Specific heat capacity of TKX-50-M and ABTOX was studied from 0 to 45 °C. In addition, the thermal decomposition of TKX-50-M and ABTOX was studied under adiabatic condition. The experiment results revealed that TKX-50-M were more thermal sensitive than ABTOX. Furthermore, ABTOX exhibited much violent than that of TKX-50-M during decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.

    Article  CAS  Google Scholar 

  2. Fischer N, Klapötke TM, Reymann M, Stierstorfer J. Nitrogen-rich salts of 1H,1′H-5,5′-bitetrazole-1,1′-diol: energetic materials with high thermal stability. Eur J Inorg Chem. 2013;12:2167–80.

    Article  Google Scholar 

  3. Klapötke TM, Witkowski TG, Wilk Z, Hadzik J. Determination of the initiating capability of detonators containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a base charge, by underwater explosion test. Propellants Explos Pyrotech. 2016;41:92–7.

    Article  Google Scholar 

  4. Gottfried JL, Klapötke TM, Witkowski TG. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser-induced air shock from energetic materials technique. Propellants Explos Pyrotech. 2017;42:1–8.

    Article  Google Scholar 

  5. Xiong XL, Chen SS, Li LJ, Jin SH, Lin JL. Purity analysis method of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). J Energy Mater. 2016;34:279–87.

    Article  CAS  Google Scholar 

  6. Niu H, Chen SS, Jin SH, Shu QH, Li LJ, Shang FQ. Dissolution properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate and disodium 5,5′-bistetrazole-1,1′-diolate in water. J Energy Mater. 2016;34:416–25.

    Article  CAS  Google Scholar 

  7. Yu YH, Chen SS, Li X, Zhu JP, Liang H, Zhang XX, Shu QH. Molecular dynamics simulations for 5,5′-bistetrazole-1,1′-diolate (TKX-50) and its PBXs. RSC Adv. 2016;6:20034–41.

    Article  CAS  Google Scholar 

  8. Niu H, Chen SS, Jin SH, Li LJ, Shu QH. Dissolution thermodynamics of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in water at T = (298.15, 303.15, 308.15 and 313.15 K). J Therm Anal Calorim. 2016;128:1–6.

    Google Scholar 

  9. Wang JF, Chen SS, Yao Q, Jin SH, Zhao SW, Yu ZF, Li JX, Shu QH. Preparation, characterization, thermal evaluation and sensitivities of TKX-50/GO composite. Propellants Explos Pyrotech. 2017;42:1104–10.

    Article  CAS  Google Scholar 

  10. Niu H, Chen SS, Shu QH, Li LJ, Jin SH. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate based polymer bonded explosive. J Hazard Mater. 2017;338:208–17.

    Article  CAS  Google Scholar 

  11. Sinditskiia VP, Filatova SA, Kolesova VI, Kapranova KO, Asachenkob AF, Nechaevb MS, Luninb VV, Shishovc NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.

    Article  Google Scholar 

  12. Wang JF, Yang YF, Zhang CY, Wang XJ, Zhang XP. Thermal decomposition reaction kinetics of dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate. Chin J Explos Propellants. 2015;38:42–5.

    Google Scholar 

  13. Huang HF, Shi YM, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121:705–9.

    Article  CAS  Google Scholar 

  14. Xiao LB, Zhao FQ, Luo Y, Li N, Gao HX, Xue YQ, Cui XZ, Hu HZ. Thermal behavior and safety of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Therm Anal Calorim. 2016;123:653–7.

    Article  CAS  Google Scholar 

  15. Muravyev NV, Monogarov KA, Asachenko AF, Nechaev MS, Ananyev IV, Fomenkov IV, Kiselevfg VG, Pivkina AN. Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Phys Chem Chem Phys. 2017;19:436–49.

    Article  CAS  Google Scholar 

  16. Niu H, Chen SS, Jin SH, Li LJ, Jing BC, Jiang ZJ, Ji JW, Shu QH. Thermolysis, nonisothermal decomposition kinetics, calculated detonation velocity and safety assessment of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Therm Anal Calorim. 2016;126:473–80.

    Article  CAS  Google Scholar 

  17. Jia JH, Liu Y, Huang SL, Xu JJ, Li SC, Zhang HB, Cao X. Crystal structure transformation and step-by-step thermal decomposition behavior of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. RSC Adv. 2017;7:49105–13.

    Article  CAS  Google Scholar 

  18. Wang JF, Chen SS, Jin SH, Wang JY, Niu N, Zhang GY, Wang XY, Wang DX. Size-dependent effect on thermal decomposition and hazard assessment of TKX-50 under adiabatic condition. Propellants Explos Pyrotech. 2018;43:488–95.

    Article  CAS  Google Scholar 

  19. Lesnikovich AI, Ivashkevich OA, Printsev GV, Gaponik PN, Levchik SV. Thermal decomposition of tetrazole Part III. Analysis of decomposition products. Thermochim Acta. 1990;171:207–13.

    Article  CAS  Google Scholar 

  20. Lesnikovich AI, Ivashkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA. Thermal decomposition of aminotetrazoles. Thermochim Acta. 2002;388:233–51.

    Article  CAS  Google Scholar 

  21. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  22. Galwey AK, Mortimer M. Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int J Chem Kinet. 2006;38:464–743.

    Article  CAS  Google Scholar 

  23. Barrie PJ. The mathematical origins of the kinetic compensation effect: 1 the effect of random experimental errors. Phys Chem Chem Phys. 2012;14:318–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by “the Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, S., Jin, S. et al. The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition. J Therm Anal Calorim 134, 2049–2055 (2018). https://doi.org/10.1007/s10973-018-7820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7820-8

Keywords

Navigation