Skip to main content
Log in

Numerical simulation of a three-layer porous heat exchanger considering lattice Boltzmann method simulation of fluid flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study investigates the thermal characteristics of a proposed porous heat exchanger (PHE). This heat exchanger consists of three sections, one high-temperature (HT) section and two heat recovery (HR) sections. Product of combustion as a high-temperature gas mixture enters to HT section in which enthalpy of gas flow is converted to thermal radiation, while in HR sections, the reverse phenomenon occurs. Simulation of fluid flow in porous medium generated by random and regular monodisperse and polydisperse particles is done using combination of the lattice Boltzmann method and smoothed profile method. Because of high-temperature variation in this system, effect of temperature on thermo-physical properties is also considered which has not been studied in previous research studies. Since the gas and solid phases are in non-local thermal equilibrium, separate energy equations are used for these phases. To obtain the radiative term in the solid energy equation, the radiative transfer equation is solved numerically by the discrete ordinates method. The influence of particles array and their sizes on the efficiency of the PHE system is studied. Finally, the effects of various parameters like optical thickness and scattering coefficient on the performance of PHE system are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(A\) :

Surface area per unit volume (m2 m−3)

\(B_{1,2}\) :

Incoming radiations (W m−2)

\(B_{1,2}^{\prime } = B_{1,2} /\sigma {\text{T}}_{\text{g0}}^{ 4}\) :

Non-dimensional incoming radiations

\(Bi = {{hL_{\text{x}} } \mathord{\left/ {\vphantom {{hL_{\text{x}} } {k_{\text{p}} }}} \right. \kern-0pt} {k_{\text{p}} }}\) :

Biot number

\(c_{\text{s}}\) :

Sound speed

\(c_{\text{g}}\) :

Specific heat of gas (J kg−1 °C−1)

\(d_{\text{p}}\) :

Obstacle size (m)

e:

Total energy

\(e_{\upalpha}\) :

Discrete particle velocity in LBM

\(f\) :

Density distribution function

F :

Fraction function

F :

Shape factor

I :

Intensity

\(I^{*} = I /\sigma {\text{T}}_{\text{g0}}^{ 4}\) :

Non-dimensional intensity

\(j\) :

Index of grids in y-direction

\(h\) :

Convective heat transfer coefficient (W m−2 °C−1)

\(K_{\text{g}}\) :

Gas thermal conductivity (W m−1 °C−1)

\(K_{\text{p}}\) :

Solid thermal conductivity (W m−1 °C−1)

\(L_{\text{x}}\) :

Length of the porous medium (m)

\(L_{\text{y}}\) :

Height of the porous medium (m)

M:

Molar mass

\(Nu = {{hL_{\text{x}} } \mathord{\left/ {\vphantom {{hL_{\text{x}} } {k_{\text{g}} }}} \right. \kern-0pt} {k_{\text{g}} }}\) :

Nusselt number

\(P = {{\tilde{P}} \mathord{\left/ {\vphantom {{\tilde{P}} {\rho u_{{{\text{g}}_{0} }}^{2} }}} \right. \kern-0pt} {\rho u_{{{\text{g}}_{0} }}^{2} }}\) :

Non-dimensional pressure

\(\tilde{P}\) :

Pressure (Pa)

\(P_{1} = {{hL_{\text{x}} A} \mathord{\left/ {\vphantom {{hL_{\text{x}} A} {\rho_{\text{g}} c_{\text{g}} u_{{{\text{g}}_{0} }} (\Delta x \cdot \Delta y)}}} \right. \kern-0pt} {\rho_{\text{g}} c_{\text{g}} u_{{{\text{g}}_{0} }} (\Delta x \cdot \Delta y)}}\) :

Dimensionless group

\(P_{2} = \frac{{_{{{\raise0.7ex\hbox{${K_{\text{p}} }$} \!\mathord{\left/ {\vphantom {{K_{\text{p}} } {L_{\text{x}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${L_{\text{x}} }$}}}} }}{{\sigma T_{{g_{0} }}^{3} }}\) :

Dimensionless group

\(P_{3} = {{hL_{\text{x}} A} \mathord{\left/ {\vphantom {{hL_{\text{x}} A} {\sigma T_{{{\text{g}}_{0} }}^{3} (\Delta x \cdot \Delta y)}}} \right. \kern-0pt} {\sigma T_{{{\text{g}}_{0} }}^{3} (\Delta x \cdot \Delta y)}}\) :

Dimensionless group

\(P_{4} = {{h_{{{\text{w}}_{\text{p}} }} L_{\text{x}} } \mathord{\left/ {\vphantom {{h_{{{\text{w}}_{\text{p}} }} L_{\text{x}} } {k_{\text{p}} }}} \right. \kern-0pt} {k_{\text{p}} }}\) :

Dimensionless group

\(P_{5} = {{h_{{{\text{w}}_{\text{g}} }} L_{\text{x}} } \mathord{\left/ {\vphantom {{h_{{{\text{w}}_{\text{g}} }} L_{\text{x}} } {k_{\text{g}} }}} \right. \kern-0pt} {k_{\text{g}} }}\) :

Dimensionless group

\(Pe = {{\rho_{\text{g}} u_{{{\text{g}}_{0} }} c_{\text{g}} L_{\text{x}} } \mathord{\left/ {\vphantom {{\rho_{\text{g}} u_{{{\text{g}}_{0} }} c_{\text{g}} L_{\text{x}} } {k_{\text{g}} }}} \right. \kern-0pt} {k_{\text{g}} }}\) :

Peclet number

\(q_{\text{rad}}\) :

Radiative heat flux (W m−2)

\(q_{\text{x}}\) :

Heat flux in x-direction

\(q_{\text{y}}\) :

Heat flux in y-direction

\(Q_{\text{rad}} = {{q_{\text{rad}} } \mathord{\left/ {\vphantom {{q_{\text{rad}} } {\sigma T_{{{\text{g}}_{0} }}^{4} }}} \right. \kern-0pt} {\sigma T_{{{\text{g}}_{0} }}^{4} }}\) :

Dimensionless radiative heat flux

\(r = {{L_{\text{x}} } \mathord{\left/ {\vphantom {{L_{\text{x}} } {L_{\text{y}} }}} \right. \kern-0pt} {L_{\text{y}} }}\) :

Aspect ratio

R :

Particle radius

R i :

Particle position vector

\(Re_{{{\text{L}}_{\text{x}} }} = {{u_{{{\text{g}}_{0} }} L_{\text{x}} } \mathord{\left/ {\vphantom {{u_{{{\text{g}}_{0} }} L_{\text{x}} } \upsilon }} \right. \kern-0pt} \upsilon }\) :

Reynolds number

\(Re_{{{\text{d}}_{\text{p}} }} = {{u_{{{\text{g}}_{0} }} d_{\text{p}} } \mathord{\left/ {\vphantom {{u_{{{\text{g}}_{0} }} d_{\text{p}} } \upsilon }} \right. \kern-0pt} \upsilon }\) :

Reynolds number

\(\hat{s}_{\text{i}}\) :

Direction vector in RTE

\(T\) :

Temperature (°C)

\(T_{\infty }\) :

Ambient temperature (°C)

\(T_{{{\text{g}}_{0\prime } }}\) :

Gas temperature at duct’s inlet (°C)

\(u_{\text{g}}\) :

Velocity along x-direction (m s−1)

\(u_{{{\text{g}}_{0} }}\) :

Gas velocity at duct’s inlet (m s−1)

\(v_{\text{g}}\) :

Velocity along y-direction (m s−1)

\(\bar{U} = {u \mathord{\left/ {\vphantom {u {u_{{{\text{g}}_{0} }} }}} \right. \kern-0pt} {u_{{{\text{g}}_{0} }} }}\) :

Non-dimensional x velocity

\(\bar{V} = {v \mathord{\left/ {\vphantom {v {u_{{{\text{g}}_{0} }} }}} \right. \kern-0pt} {u_{{{\text{g}}_{0} }} }}\) :

Non-dimensional y velocity

\(x\) :

Coordinate along the flow direction (m)

\(x_{\text{i}}\) :

Mole fraction

X = \({{L_{\text{x}} } \mathord{\left/ {\vphantom {{L_{\text{x}} } {L_{\text{y}} }}} \right. \kern-0pt} {L_{\text{y}} }}\) :

Non-dimensional length

\(y\) :

Coordinate perpendicular to the flow direction (m)

\(y_{\text{i}}\) :

Mass fraction

\(\alpha\) :

Particle velocity direction

\(\beta = \sigma_{\text{a}} + \sigma_{\text{s}}\) :

Extinction coefficient

\(\mathop \nabla \limits^{*} = L_{\text{x}} \nabla\) :

Non-dimensional gradient operator

\(\Delta x\) :

Grid spacing along x-axis (m)

\(\Delta y\) :

Grid spacing along y-axis (m)

\(\Delta_{{\upeta_{\text{x}} }} = {{\Delta x} \mathord{\left/ {\vphantom {{\Delta x} {L_{\text{x}} }}} \right. \kern-0pt} {L_{\text{x}} }}\) :

Non-dimensional grid spacing along x-axis

\(\Delta_{{\upeta_{\text{y}} }} = {{\Delta y} \mathord{\left/ {\vphantom {{\Delta y} {L_{\text{x}} }}} \right. \kern-0pt} {L_{\text{x}} }}\) :

Non-dimensional grid spacing along y-axis

\(\delta t\) :

Time step

\(\delta x\) :

Lattice spacing

\(\varepsilon\) :

Energy square

\(\varepsilon\) :

Emissivity

\(\varepsilon\) :

Effectiveness

\(\eta_{\text{x}} = {x \mathord{\left/ {\vphantom {x {L_{\text{x}} }}} \right. \kern-0pt} {L_{\text{x}} }}\) :

Non-dimensional x coordinate

\(\eta_{\text{y}} = {y \mathord{\left/ {\vphantom {y {L_{\text{x}} }}} \right. \kern-0pt} {L_{\text{x}} }}\) :

Non-dimensional y coordinate

\(\nu\) :

Kinematical viscosity (m2 s−1)

\(\varphi\) :

Porosity

\(\varphi (x,t)\) :

Concentration function

\(\phi\) :

Scattering phase function

\(\rho_{\text{g}}\) :

Gas density (kg m−3)

\(\rho_{\text{w}}\) :

Wall reflection coefficient

\(\sigma\) :

Stephan-Boltzmann coefficient (W m−2 K−4)

\(\sigma_{\text{a}}\) :

Absorption coefficient (m−1)

\(\sigma_{\text{s}}\) :

Scattering coefficient (m−1)

\(\theta_{{{\text{g}},{\text{p}}}} = {{T_{{{\text{g}},{\text{p}}}} } \mathord{\left/ {\vphantom {{T_{{{\text{g}},{\text{p}}}} } {T_{{{\text{g}}_{ 0} }} }}} \right. \kern-0pt} {T_{{{\text{g}}_{ 0} }} }}\) :

Non-dimensional temperature

\(\tau\) :

Non-dimensional relaxation time

\(\tau_{0} = \beta L_{\text{x}}\) :

Optical thickness

\(\tau_{1} = \sigma_{\text{a}} L_{\text{x}}\) :

Non-dimensional parameter

\(\tau_{2} = \sigma_{\text{s}} L_{\text{x}}\) :

Non-dimensional parameter

\(w\) :

Weighting constant

\(\omega\) :

Scattering albedo

\(\mu\) :

Dynamic viscosity

\(\zeta_{{}}\) :

Particle interfacial thickness

\({\text{b}}\) :

Black body

\({\text{B}}\) :

Bottom

\({\text{e}}\) :

Exit of the porous matrix

\({\text{g}}\) :

Gas

i:

Inlet of the porous matrix

p:

Solid

T:

Top

eq:

Equilibrium

in:

Incoming velocity direction

m:

Outgoing radiation direction

\({\text{m}}^{\prime }\) :

Incoming radiation direction

\({\text{out}}\) :

Outgoing velocity direction

\(+\) :

Downstream direction

\(-\) :

Upstream direction

References

  1. Bahiraei M, Jamshidmofid M, Heshmatian S. Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution. Adv Powder Technol. 2017;28(9):2380–92.

    Article  CAS  Google Scholar 

  2. Bahiraei M, Hosseinalipour SM, Saeedan M. Prediction of Nusselt number and friction factor of water-Al2O3 nanofluid flow in shell-and-tube heat exchanger with helical baffles. Chem Eng Commun. 2015;202:260–8.

    Article  CAS  Google Scholar 

  3. Saeedan M, Bahiraei M. Effects of geometrical parameters on hydrothermal characteristics of shell-and-tube heat exchanger with helical baffles: numerical investigation, modeling and optimization. Chem Eng Res Des. 2015;96:43–53.

    Article  CAS  Google Scholar 

  4. Bahiraei M, Hangi M, Saeedan M. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy. 2015;93:2229–40.

    Article  CAS  Google Scholar 

  5. Bahiraei M, Naghibzadeh SM, Jamshidmofid M. Efficacy of an eco-friendly nanofluid in a miniature heat exchanger regarding to arrangement of silver nanoparticles. Energy Convers Manag. 2017;144:224–34.

    Article  CAS  Google Scholar 

  6. Bahiraei M, Khosravi R, Heshmatian R. Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl Therm Eng. 2017;123:266–76.

    Article  Google Scholar 

  7. Echigo R. Effective energy conversion method between gas enthalpy and thermal radiation and application to industrial furnaces. In: Proceedings of the 7th international heat transfer conference on München. 1982;6:361-6.

  8. Yoshida H, Yung JH, Echigo R, Tomimura T. Transient characteristics of combined conduction, convection and radiation heat transfer in porous media. Int J Heat Mass Transf. 1990;33–5:847–57.

    Article  Google Scholar 

  9. Gandjalikhan Nassab SA. Transient characteristics of an energy recovery system using a porous medium. Proc Inst Mech Eng Part A J Power Energy. 2002;216:387–94.

    Article  Google Scholar 

  10. Gandjalikhan Nassab SA, Maramisaran M. Transient numerical analysis of a multi-layered porous heat exchanger including gas radiation effect. Int J Therm Sci. 2009;48:1586–95.

    Article  CAS  Google Scholar 

  11. Jahanshahi Javaran E, Gandjalikhan Nassab SA, Jafari S. Thermal analysis of a 2-D heat recovery system using porous media including lattice Boltzmann simulation of fluid flow. Int. J. Therm Sci. 2010;49–6:1031–41.

    Article  CAS  Google Scholar 

  12. Shabani Nejad H, Gandjalikhan Nassab SA, Jahanshahi Javaran E. Thermal Behavior of a 3-D Radiant Porous Air Heater Using Discrete Ordinates Method. Can J Sci Eng Math. 2012;3–1:1–21.

    Google Scholar 

  13. Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation. J. Fluid Mech. 1994;271:285–310.

    Article  CAS  Google Scholar 

  14. Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results. J. Fluid Mech. 1994;271:311–39.

    Article  CAS  Google Scholar 

  15. Foti E, Succi S, Higuera F. Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys Lett. 1989;10–5:433–8.

    Google Scholar 

  16. Pan C, Luo LS, Miller CT. An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids. 2006;35:898–909.

    Article  CAS  Google Scholar 

  17. Nabovati A, Sousa ACM. Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method. J Eng Sci Tech. 2007;2–3:226–37.

    Google Scholar 

  18. Grucelski A, Pozorski J. Lattice Boltzmann simulations of flow past a circular cylinder and in simple porous media. Int J Comput Fluids. 2013;71:406–16.

    Article  Google Scholar 

  19. Salimi MR, Taeibi Rahni M, Jam F. Heat transfer analysis of a porously covered heated square cylinder, using a hybrid Navier–Stokes-lattice Boltzmann numerical method. Int J Therm Sci. 2015;91:59–75.

    Article  Google Scholar 

  20. Nakayama Y, Yamamoto R. Simulation method to resolve hydrodynamic interactions in colloidal dispersions. Phys Rev E. 2005;71:1–7.

    Google Scholar 

  21. Jahanshahi Javaran E, Rahnama M, Jafari S. Investigating the applicability of combined lattice Boltzmann-smoothed profile methods in particulate systems. Part Sci Technol. 2014;31:643–52.

    Article  CAS  Google Scholar 

  22. Singh OK, Panwar NL. Effects of thermal conductivity and geometry of materials on the temperature variation in packed bed solar air heater. J Therm Anal Calorim. 2013;111:839–47.

    Article  CAS  Google Scholar 

  23. Choi SW, Jung JM, Yoo HM, Kim SH, Lee WI. Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water. J Therm Anal Calorim. 2018;132:1253–62.

    Article  CAS  Google Scholar 

  24. Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Oxford University Press; 2001. https://doi.org/10.1016/s0997-7546(02)00005-5.

    Book  Google Scholar 

  25. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9–6:1591–8.

    Article  Google Scholar 

  26. Rahimian MH, Pourshaghaghy A. Direct simulation of forced convection flow in a parallel plate channel filled with porous media. Int Commun Heat Mass Transf. 2002;29–6:867–78.

    Article  Google Scholar 

  27. Poulikakos D, Renken K. Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity, and brinkman friction. J Heat Transfer. 1987;109–4:880–8.

    Article  Google Scholar 

  28. Renken K, Poulikakos D. Experiment and analysis of forced convective heat transport in a packed bed of spheres. Int J Heat Mass Transf. 1988;31–7:1399–408.

    Article  Google Scholar 

  29. White FM. Viscous fluid flow. 2nd ed. New York: McGraw-Hill; 1991.

    Google Scholar 

  30. Turns SR. An Introduction to Combustion. 2nd ed. New York: McGraw Hill; 2007.

    Google Scholar 

  31. Hwang GJ, Wu CC, Chao CH. Investigation of non-Darcian forced convection in an asymmetrically heated sintered porous channel. J Heat Transfer. 1995;117–8:725–31.

    Article  Google Scholar 

  32. Alazmi B, Vafai K. Analysis of variants within the porous media transport models. J Heat Transf. 2000;122–5:303–12.

    Article  Google Scholar 

  33. Modest MF. Radiative Heat Transfer. 2nd ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  34. Talukdar P, Mishra SC, Trimis D, Durst F. Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field. J Quant Spectrosc Radiat Transf. 2004;84:527–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Jahanshahi Javaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirshekari, M., Gandjalikhan Nassab, S.A. & Jahanshahi Javaran, E. Numerical simulation of a three-layer porous heat exchanger considering lattice Boltzmann method simulation of fluid flow. J Therm Anal Calorim 136, 1737–1755 (2019). https://doi.org/10.1007/s10973-018-7794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7794-6

Keywords

Navigation