Skip to main content
Log in

Cooperative domains in lipid membranes

Size determination by calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase transitions of multibilayer structures of hydrated L-α-dipalmitoyl- and L-α-dimyristoylphosphatidylcholine (DPPC and DMPC) were studied by differential scanning calorimetry. For the main phase transition, thermodynamic parameters (temperature, enthalpy, half-width and cooperative domain size, CN) were determined in a broad range of scanning rates x, from 0.1 to 40.0 K min−1. Marked dependence on scanning rate was obtained for CN, while for other parameters it was much weaker. A hyperbolic dependence CN (x) = c + b/(x + a) was established (a, b, c are constants). The lowering of the scanning rate causes an abrupt CN increase at x → 0, which is one of the reasons of the large scatter (by 1–2 orders) in the literature data on CN values. Based on the data obtained, a criterion is proposed for the choice of optimum scanning rate that would minimize the error in CN determination. It is argued that reliable CN values can be obtained if the measured peak half-width is much larger than the corresponding experimental error for the given system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mavromoustakos TM. The use of differential scanning calorimetry to study drug–membrane interactions. In: Dopico AM, editor. Methods in molecular biology, vol. 400., Methods in membrane lipidsTotowa: Humana Press Inc; 2007. p. 587–600.

    Google Scholar 

  2. Pruchnik H. Influence of cytotoxic butyltin complexes with 2-sulfobenzoic acid on the thermotropic phase behavior of lipid model membranes. J Therm Anal Calorim. 2017;127:507–14.

    Article  CAS  Google Scholar 

  3. Owusu-Ware SK, Chowdhry BZ, Leharne SA, Antonijevic MD. Phase behaviour of dehydrated phosphatidylcholines. J Therm Anal Calorim. 2017;127:415–21.

    Article  CAS  Google Scholar 

  4. Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18:159–73.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis RN, Mannock DA, McElhaney RN. Differential scanning calorimetry in the study of lipid phase transitions in model and biological membranes: practical considerations. In: Dopico AM, editor. Methods in molecular biology, methods in membrane lipids, vol. 400. Totowa: Humana Press Inc; 2007. p. 171–95.

    Google Scholar 

  6. Papahadjopoulos D, Miller N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta. 1967;135:624–38.

    Article  CAS  PubMed  Google Scholar 

  7. Nagle JF, Tristram-Nagle S. Structure of lipid bilayer. Biochim Biophys Acta. 2000;1439:159–95.

    Article  Google Scholar 

  8. Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 2009;6(5):1264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Zhao T, Sun Z. Analytical techniques and methods for study of drug–lipid membrane interactions. Rev Anal Chem. 2017. https://doi.org/10.1515/revac-2017-0012.

    Article  Google Scholar 

  10. Jewell SA. Living systems and liquid crystals. Liq Cryst. 2011;38:1699–714.

    Article  CAS  Google Scholar 

  11. Wack DC, Webb WW. Synchrotron X-ray study of the modulated lamellar phase P β′ in the lecithin–water system. Phys Rev A. 1989;40:2712–29.

    Article  CAS  Google Scholar 

  12. Bourgaux C, Couvreur P. Interactions of anticancer drugs with biomembranes: What can we learn from model membranes? J Control Release. 2014;190:127–38.

    Article  CAS  PubMed  Google Scholar 

  13. Klein RA. Thermodynamics and membrane processes. Q Rev of Biophys. 1982;15:667–757.

    Article  CAS  Google Scholar 

  14. Sturtevant JM. A scanning calorimetric study of small molecule-lipid bilayer mixtures. Proc Natl Acad Sci USA. 1982;79:3963–7.

    Article  CAS  PubMed  Google Scholar 

  15. Albon N, Sturtevant JM. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Proc Natl Acad Sci USA. 1978;75:2258–60.

    Article  CAS  PubMed  Google Scholar 

  16. Lewis RNAH, McElhaney RN. The mesomorphic phase behavior of lipid bilayers. In: Yeagle PL, editor. The structure of biological membranes. 2nd ed. Boca Raton: CRC Press; 2004. p. 53–72.

    Google Scholar 

  17. Sapia P, Sportelli L. Effect of high electrolyte concentration on the cooperativity of the main phase-transition of DPPC. J Phys II Fr. 1994;4:1107–16.

    CAS  Google Scholar 

  18. Wadsö I. Thermochemistry of living cell systems. In: Jones MN, editor. Biochemical thermodynamics. Amsterdam: Elsevier; 1988. p. 241–309.

    Google Scholar 

  19. Ivkov BG, Berestovskii GN. Dynamic structure of lipid bilayer. Moskow: Nauka; 1981.

    Google Scholar 

  20. Sugar IP. Cooperativity and classification of phase transitions. Application to one- and two-component phospholipid membranes. J Phys Chem. 1987;91:95–101.

    Article  CAS  Google Scholar 

  21. Marsh D, Watts A, Knowles PF. Evidence for phase boundary lipid. Permeability of tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition. Biochemistry. 1976;15(16):3570–8.

    Article  CAS  PubMed  Google Scholar 

  22. Mabrey S, Sturtevant JM. Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc Natl Acad Sci USA. 1976;73:3862–6.

    Article  CAS  PubMed  Google Scholar 

  23. Giammarinaro MS, Micciancio S. Hysteresis at the L α  − P αβ phase transition in hen egg lecithin. Mol Cryst Liq Cryst. 1981;76:35–41.

    Article  CAS  Google Scholar 

  24. Losada-Pérez P, Mertens N, de Medio-Vasconcelos B, Slenders E, Leys J, Peeters M, van Grinsven B, Gruber J, Glorieux C, Pfeiffer H, Wagner P, Thoen J. Phase transitions of binary lipid mixtures: a combined study by adiabatic scanning calorimetry and quartz crystal microbalance with dissipation monitoring. Adv Condens Matter Phys. 2015; Article ID 479318, p. 14. http://dx.doi.org/10.1155/2015/479318.

  25. Owusu-Ware SK, Chowdhry BZ, Leharne SA, Antonijević MD. Phase behaviour of dehydrated phosphatidylcholines. J Therm Anal Calorim. 2017;127(1):415–21.

    Article  CAS  Google Scholar 

  26. Heerklotz H. The microcalorimetry of lipid membranes. J Phys Condens Matter. 2004;16:R441–67.

    Article  CAS  Google Scholar 

  27. Grabitz P, Ivanova VP, Heimburg T. Relaxation kinetics of lipid membranes and its relation to the heat capacity. Biophys J. 2002;82:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blicher A, Wodzinska K, Fidorra M, Winterhalter M, Heimburg T. The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics. Biophys J. 2009;96:4581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kharakoz DP. On a possible physiological role of phase transition “liquid-solid” in biological membranes. Uspekhi Biol Khimii. 2001;41:333–64.

    CAS  Google Scholar 

  30. Levy D, Briggman K. Cholesterol/phospholipid interactions in hybrid bilayer membranes. Langmuir. 2007;23:7155–61.

    Article  CAS  PubMed  Google Scholar 

  31. Denisov IG, McLean MA, Shaw AW, Grinkova YV, Sligar SG. Thermotropic phase transition in soluble nanoscale lipid bilayers. J Phys Chem B. 2005;109(32):15580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mouritsen OG, Jorgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994;73:3–25.

    Article  CAS  PubMed  Google Scholar 

  33. Van Osdol WW, Ye Q, Johnson ML, Biltonen RL. Effects of the anesthetic dibucaine on the kinetics of the gel–liquid crystalline transition of dipalmitoylphosphatidylcholine multilamellar vesicles. Biophys J. 1992;63:1011–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gruszecki WI, Wojtowicz K, Misiak LE, Smal A. Effect of zeaxaiitliin on the structure and dynamics of dipalimitoylphospatidylcholine bilayers. Ann Univ Mariae Curie Sklodovvska. 1991/1992;46/47(16):143–9.

  35. Romero EL, Morilla MJ, Alonso S. Rigid multilamellar bilayer cooperativity is modified by non covalently linked neuraminic-5-acid: a spectrophotometric determination. Gen Physiol Biophys. 2001;20:113–29.

    CAS  PubMed  Google Scholar 

  36. Pruchnik H, Bonarska-Kujawa D, Zyłka R, Oszmianski J, Kleszczynska H. Application of the DSC and spectroscopy methods in the analysis of the protective effect of extracts from the blueberry fruit of the genus vaccinum in relation to the lipid membrane. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7493-3.

    Article  Google Scholar 

  37. Agafonov AV, Gritsenko EN, Shlyapnikova EA, Kharakoz DP, Belosludtseva NV, Lezhnev EI, Saris NEL, Mironova GD. Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol. 2007;215(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  38. Belosludtsev KN, Belosludtseva NV, Tenkov KS, Penkov NV, Agafonov AV, Pavlik LL, Yashin VA, Samartsev VN, Dubinin MV. Study of the mechanism of permeabilization of lecithin liposomes and rat liver mitochondria by the antimicrobial drug triclosan. Biophys Biochim Acta. 2017. https://doi.org/10.1016/j.bbamem.2017.09.018.

    Article  Google Scholar 

  39. Sadchenko AO, Vashchenko OV, Puhovkin AY, Kopeika EF, Kasian NA, Budiyanska LV, Maschenko AV, Al-Mugkhrabi YAM, Sofronov DS, Lisetski LN. The characteristics of interactions of pharmaceuticals and their active ingredients with lipid membranes. Biophysics. 2017;62(4):570–9.

    Article  CAS  Google Scholar 

  40. Biltonen RL. A statistical-thermodynamic view of cooperative structural changes in phospholipid bilayer membranes: their potential role in biological function. J Chem Thermodyn. 1990;22:1–19.

    Article  CAS  Google Scholar 

  41. Alaouie AM, Smirnov AI. Cooperativity and kinetics of phase transitions in nanopore-confined bilayers studied by differential scanning calorimetry. Biophys J Biophys Lett. 2005;88(2):L11–3.

    CAS  Google Scholar 

  42. Lonhus K, Budianska L, Lisetski L. Meaning of activation energy in phospholipid multibilayers phase transitions. Chem Phys Lipids. 2017;206:53–9.

    Article  CAS  PubMed  Google Scholar 

  43. Vashchenko OV, Sadchenko AO, Budianska LV, Lisetski LN. The combined effects of nitrates on multibilayer lipid membranes: thermodynamic effects. Biophysics. 2017. https://doi.org/10.1134/S0006350917020282.

    Article  Google Scholar 

  44. Bulavin LA, Soloviov DV, Gordeliy VI, Svechnikova OS, Krasnikova AO, Kasian NA, Vashchenko OV, Lisetski LN. Lyotropic model membrane structures of hydrated DPPC: DSC and small-angle X-ray scattering studies of phase transitions in the presence of membranotropic agents. Phase Transit. 2015;88(6):582–92.

    Article  CAS  Google Scholar 

  45. Bulavin LA, Soloviov DV, Kuklin AI, Lisetski LN, Kasian NA, Krasnikova AO, Vashchenko OV, Zinchenko AV. Small-angle X-ray scattering and differential scanning calorimetry studies of DPPC multilamellar structures containing membranotropic agents of different chemical nature. Ukr Phys J. 2015;60(9):905–9.

    Article  Google Scholar 

  46. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998;376:91–145.

    Article  Google Scholar 

  47. Sturtevant JM. Biochemical applications of differential scanning calorimetry. Ann Rev Phys Chem. 1987;38:463–88.

    Article  CAS  Google Scholar 

  48. Köberl M, Schöppe A, Hinz H-J, Rapp G. Cooperativity of glycolipid phase transitions: a critical comparison of results from equilibrium X-ray, density and microcalorimetric measurements. Chem Phys Lipids. 1998;95:59–82.

    Article  Google Scholar 

  49. Sturtevant JM. The effect of sodium chloride and calcium chloride on the main phase transition of dimyristoylphosphatidylcholine. Chem Phys Lipids. 1998;95:163–8.

    Article  CAS  Google Scholar 

  50. Khvedelidze M, Mdzinarashvili T, Shekiladze E, Schneider M, Moersdorf D, Bernhardt I. Structure of drug delivery DPPA and DPPC liposomes with ligands and their permeability through cells. J Liposome Res. 2015;25(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  51. Hata T, Matsuki H, Kaneshina S. Effect of local anesthetics on the phase transition temperatures of ether- and ester-linked phospholipid bilayer membranes. Colloids Surf B Biointerfaces. 2000;18:41–50.

    Article  CAS  Google Scholar 

  52. Stillwell W. An introduction to biological membranes. 2nd ed. Amsterdam: Elsevier; 2016. p. 580.

    Google Scholar 

  53. Kharakoz DP, Panchelyuga MS, Tiktopulo EI, Shlyapnikova EA. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions. Chem Phys Lipids. 2007;150:217–28.

    Article  CAS  PubMed  Google Scholar 

  54. Biomembranes GR. Molecular structure and functions. 1st ed. New York: Springer; 1997.

    Google Scholar 

  55. Seeger HM, Fidorra M, Heimburg T. Domain size and fluctuations in domain interfaces in lipid mixtures. Macromol Symp. 2005;219:85–96.

    Article  CAS  Google Scholar 

  56. Shimshick EJ, McConnell HM. Lateral phase separation in phospholipid membranes. Biochem. 1973;12(12):2351–60.

    Article  CAS  Google Scholar 

  57. Kaasgaard T, Leidy C, Crowe JH, Mouritsen OG, Jørgensen K. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers. Biophys J. 2003;85:350–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Posch M, Rakusch U, Mollay C, Laggner P. Cooperative effects in the interaction between melittin and phosphatidylcholine model membranes studies by temperature scanning densitometry. J Biol Chem. 1983;258:1761–6.

    CAS  PubMed  Google Scholar 

  59. Mouritsen O, Jorginsen K. Dynamic lipid-bilayer heterogeneity: a mesoscopic vehicle for membrane function. Bio Essays. 1992;14:129–36.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Kasian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasian, N., Vashchenko, O., Budianska, L. et al. Cooperative domains in lipid membranes. J Therm Anal Calorim 136, 795–801 (2019). https://doi.org/10.1007/s10973-018-7695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7695-8

Keywords

Navigation