Skip to main content
Log in

Effect of viscous dissipation on MHD water-Cu and EG-Cu nanofluids flowing through a porous medium

A comparative study of Stokes second problem

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper provides a comparative analysis of two different types of nanofluids for Stokes second problem. Additional effects of MHD, porosity and viscous dissipation are also considered. Two types of Newtonian liquids (water and ethylene glycol) are considered as base fluids with suspended nanosized Cu particles. A homogenous model of Newtonian nanofluids over a flat plate is used to describe this phenomenon with Stokes boundary conditions such that the ambient fluid is static and with uniform temperature. The problem is first written in terms of nonlinear partial differential equations with physical conditions; then after non-dimensional analysis, the Laplace transform method is used for its closed-form solution. Exact expressions are determined for the dimensionless temperature, velocity field, Nusselt number and skin friction coefficient and arranged in terms of exponential and complementary error functions satisfying the governing equations and boundary conditions. They are also reduced to the known solutions of Stokes second problem for Cu-water nanofluids. Results are computed using Maple software. The results showed that both skin friction and rate of heat transfer increase with increasing solid volume fraction of nanoparticles. MHD and porosity had an opposite effect on velocity for both types of nanofluids. The dimensionless temperature increases by increasing the Eckert and Hartmann numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Strength of magnetic field (wb m−2)

\(c_{\text{p}}\) :

Heat capacity at a (J kg−1 K−1) constant pressure

\(\left( {c_{\text{p}} } \right)_{\text{nf}}\) :

Nanofluid heat capacity(J kg−1 K−1) at a constant pressure

\(H(t)\) :

Heaviside function

\(k\) :

Permeability (H m−1)

\(K\) :

Porosity parameter

\(k_{\text{f}}\) :

Base fluid thermal conductivity (W m−1 k−1)

\(k_{\text{s}}\) :

Solid particle thermal conductivity (W m−1 k−1)

\(k_{\text{nf}}\) :

Nanofluid thermal conductivity (W m−1 k−1)

\(M\) :

Hartmann number

\(\Pr\) :

Prandtl number

\(T\) :

Temperature of the fluid (K)

\(T_{{\infty }}\) :

Ambient temperature (K)

\(t\) :

Time (s)

\(u\) :

Velocity of the fluid (m s−1)

\({\text{erfc}}\) :

Complementary error function

\(\mu_{\text{f}}\) :

Base fluid dynamic viscosity (m2 s−1)

\(\mu_{\text{nf}}\) :

Nanofluid dynamic viscosity (m2 s−1)

\(\rho_{\text{f}}\) :

Base fluid density (kg m−3)

\(\rho_{\text{s}}\) :

Solid particle density (kg m−3)

\(\rho_{\text{nf}}\) :

Nanofluid density (kg m−3)

\(\sigma\) :

Electric conductivity (S m−1)

\(\sigma^{*}\) :

Stefan–Boltzmann constant (W m−2 K−4)

\(\theta\) :

Dimensionless temperature

\(\varphi\) :

Porosity of the medium (H m−1)

\(\omega\) :

Frequency of the oscillation (Hz)

\(f\) :

Base fluid

\(s\) :

Solid particle nanofluid

nf:

Nanofluid

w :

Condition at wall

\(\infty\) :

Condition at infinity

*:

Dimensional variables

References

  1. Stokes GG. Trans Camb Philos Soc. 1851;9:8–106.

    Google Scholar 

  2. Soundalgekar VM. Rheol Acta. 1981;13:177–9.

    Article  Google Scholar 

  3. Rajagopal KR, Na TY. Acta Mech. 1983;48:233–9.

    Article  Google Scholar 

  4. Rajagopal KR. Int J Non-Linear Mech. 1982;17:369–73.

    Article  Google Scholar 

  5. Puri P. Rheol Acta. 1984;23:451–3.

    Article  Google Scholar 

  6. Tigoiu V. Rev Roum Math Pures Appl. 2000;45:375–82.

    Google Scholar 

  7. Tan WC, Masuoka T. Phys Fluids. 2005;17:023101–7.

    Article  CAS  Google Scholar 

  8. Fetecau C, Fetecau C. Int J Non-Linear Mech. 2002;38:423–7.

    Article  Google Scholar 

  9. Fetecau C, Jamil M, Fetecau C, Siddique I. Int J Non-Linear Mech. 2009;44:1085–90.

    Article  Google Scholar 

  10. Jordan PM, Feuillade C. Int J Non-Linear Mech. 2009;44:383–8.

    Article  Google Scholar 

  11. Nazar M, Corina F, Vieru D, Fetecau C. Non-Linear Anal Real World Appl. 2010;1:584–91.

    Article  Google Scholar 

  12. Vieru D, Rauf A. Can J Phys. 2011;89:1–12.

    Article  Google Scholar 

  13. Vieru D, Rauf A. Appl Math Inf Sci. 2013;7:209–19.

    Article  Google Scholar 

  14. Ali F, Khan I, Samiulhaq, Sharidan S. Z Naturforsch. 2012;76a:377–80.

    Google Scholar 

  15. Khan I, Fakhar K, Sharidan S. Transp Porous Media. 2012;91:49–58.

    Article  CAS  Google Scholar 

  16. Khan I, Farhad A, Samiulhaq, Sharidan S. Z Naturforsch. 2013;68a:635–45.

    Google Scholar 

  17. Fetecau C, Vieru D, Fetecau C. Int J Non-Linear Mech. 2008;43:451–7.

    Article  Google Scholar 

  18. Zeng Y, Weinbaum S. J Fluid Mech. 1995;287:59–74.

    Article  CAS  PubMed  Google Scholar 

  19. Liu CM. Math Prob Eng. 2008;754262:1–18.

    Article  Google Scholar 

  20. Erdogan ME. Int J Non-Linear Mech. 2000;35:1–6.

    Article  Google Scholar 

  21. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows. In: Siginer DA, Wang HP, editors. American society of mechanical engineers. New York; 1995. p. 99–105.

  22. Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S. In: Proceeding of the symposium on nanophase and nanocomposite materials II, 1997;457:3–11.

  23. Buongiorno J. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  24. Dinarvand RH, Abulhasansari M, Pop I. Adv Powder Technol. 2015;26:1423–34.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Chamkha A. Numer Heat Transf Part A Appl. 2016;69:1186–200.

    Article  CAS  Google Scholar 

  26. Sheikholeslami MM, Rashidi M, Hayat T, Ganji DD. J Mol Liquid. 2018;2016:393–9.

    Google Scholar 

  27. Khan U, Mohyud-Din ST, Bin-Mohsin B. Aerosp Sci Technol. 2016;50:196–203.

    Article  Google Scholar 

  28. Khan U, Ahmed N, Mohyud-Din ST. J Nanofluids. 2016;5:239–44.

    Article  Google Scholar 

  29. Turkyilmazoglu M, Pop I. Int J Heat Mass Transf. 2013;59:167–71.

    Article  CAS  Google Scholar 

  30. Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. Hoboken: Wiley; 2008.

    Google Scholar 

  31. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media, and nanofluids. Boca Raton, New York: CRC Press, Taylor & Francis Group; 2016.

    Book  Google Scholar 

  32. Kakaç S, Pramuanjaroenkij A. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  CAS  Google Scholar 

  33. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  34. Groşan T, Sheremet MA, Pop I. CRC Press, Taylor & Francis, New York, p. 267–284, 2017

  35. Zin NAM, Khan I, Sharidan S. J Mol Liquids. 2016;222:138–50.

    Article  CAS  Google Scholar 

  36. Aaiza G, Khan I, Shafie S. Nanoscale Res Lett. 2015;490:1–14.

    Google Scholar 

  37. Ali F, Madeha G, Khan I. J Mol Liquids. 2016;223:412–9.

    Article  CAS  Google Scholar 

  38. Khalid A, Khan I, Sharidan S. J Mol Liquids. 2016;221:1175–83.

    Article  CAS  Google Scholar 

  39. Pandey AK, Kumar M. Alex Eng J. 2016;55:3115–23.

    Article  Google Scholar 

  40. Mahanthesh B, Gireesha BJ. Gorla RSR. Sci: Ass Arab Univ Bas Appl; 2016.

    Google Scholar 

  41. Makinde OD. Int J Numer Methods Heat Fluid Flow. 2013;23:1291–303.

    Article  CAS  Google Scholar 

  42. Naeema I, Khan WA, Khan ZH. J King Saud Univ Sci, in press corrected proof, https://doi.org/10.1016/j.jksus.2017.05.001.

  43. Saqib M, Ali F, Khan IJ. Therm Anal Calorim. 2018;7:1–10.

    Google Scholar 

  44. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7035-z.

    Article  Google Scholar 

  45. Esfe MH, Saedodin S. Therm Anal Calorim. 2015;119:1205–13.

    Article  CAS  Google Scholar 

  46. Zadkhast M, Toghraie D, Karimipour A. Therm Anal Calorim. 2017;129:859–67.

    Article  CAS  Google Scholar 

  47. Arabpour A, Kariipour A, Toghraie D. Therm Anal Calorim. 2018;131:1553–66.

    Article  CAS  Google Scholar 

  48. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Therm Anal Calorim. 2018;131:1757–66.

    Article  CAS  Google Scholar 

  49. Rashidi S, Bovand M, Esfahani JA. J Mol Liquids. 2016;215:276–84.

    Article  CAS  Google Scholar 

  50. Bovand M, Rashidi S, Esfahani JA. J Thermophys Heat Transf. 2017;31:218–29.

    Article  CAS  Google Scholar 

  51. Parizad Laein R, Rashidi S, Abolfazli Esfahani J. Adv Powder Technol. 2016;27:312–22.

    Article  CAS  Google Scholar 

  52. Zeibi Shirejini S, Rashidi S, Esfahani JA. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  53. Maskaniyan M, Rashidi S, Esfahani JA. Powder Technol. 2017;312:260–9.

    Article  CAS  Google Scholar 

  54. Javadi P, Rashidi S, Esfahani JA. J Thermophys Heat Transf. 2017;31:983–8.

    Article  CAS  Google Scholar 

  55. Rashidi S, Ehsan OM, Languri M. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  56. Rashidi S, Eskandarian M, Mahian O, Poncet S. Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  57. Christov IC. Mech Res Commun. 2010;37:717–23.

    Article  Google Scholar 

  58. Christov IC. Nonlinear Anal: Real World Appl. 2011;12:3687–90.

    Article  CAS  Google Scholar 

  59. Christov IC, Christov CI. Acta Mech. 2010;215:25–8.

    Article  Google Scholar 

  60. Christov IC, Jordan PM. Int J Eng Sci. 2012;51:326–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Khan, W.A. Effect of viscous dissipation on MHD water-Cu and EG-Cu nanofluids flowing through a porous medium. J Therm Anal Calorim 135, 645–656 (2019). https://doi.org/10.1007/s10973-018-7459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7459-5

Keywords

Navigation