Skip to main content
Log in

Thermal behavior and decomposition kinetic studies of biomedical UHMWPE/vitamin C compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the effects of adding vitamin C to biomedical ultra-high molecular weight polyethylene (B-UHMWPE) on thermal behavior and thermal degradation kinetics are investigated. The kinetic studies were conducted using Ozawa–Flynn–Wall (OFW), corresponding to pre-exponential factor (A) and activation energy (Ea). Compounds with 1.0 and 2.0% mass vitamin C exhibited a lower decomposition rate. Activation energy results from the OFW and Kissinger methods were close to each other and showed a dependence on the degree of conversion (α), with Ea being an increasing function of conversion degree to B-UHMWPE and a decreasing function for the compounds. Finally, the pre-exponential factor increases with the addition of vitamin C, favoring its interaction with the free radicals originated from the thermal degradation of B-UHMWPE, also suggesting a reduction in its decomposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bracco P, Oral E. Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res. 2011;469:2286–93.

    Article  Google Scholar 

  2. Oral E, Greenbaum ES, Malhi AS, Harris WH, Muratoglu OK. Characterization of irradiated blends of alpha-tocopherol and UHMWPE. Biomaterials. 2005;26:6657–63.

    Article  CAS  Google Scholar 

  3. Fu J, Doshi BN, Oral E, Muratoglu OK. High temperature melted, radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with low wear and high impact strength. Polymer. 2013;54:199–209.

    Article  CAS  Google Scholar 

  4. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20:1659–88.

    Article  CAS  Google Scholar 

  5. Paxton EW, Inacio M, Slipchenko T, Fithian DC. The Kaiser Permanente national total joint replacement registry. Perm J. 2008;12:12–6.

    Article  Google Scholar 

  6. Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials. 2004;25:515–22.

    Article  Google Scholar 

  7. Kurtz SM, Dumbleton J, Siskey RS, Wang A, Manley M. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res A. 2009;90:549–63.

    Article  CAS  Google Scholar 

  8. Lerf R, Zurbrugg D, Delfosse D. Use of vitamin E to protect cross-linked UHMWPE from oxidation. Biomaterials. 2010;31:3643–8.

    Article  CAS  Google Scholar 

  9. Turner A, Okubo Y, Teramura S, Niwa Y, Ibaraki K, Kawasaki T, Hamada D, Uetsuki KK, Tomita N. The antioxidant and non-antioxidant contributions of vitamin E in vitamin E blended UWMWPE for total kneep replacement. J Mech Behav Biomed. 2014;31:21–30.

    Article  CAS  Google Scholar 

  10. Costa L, Carpentieri I, Bracco P. Post electron-beam irradiation oxidation of orthopedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polym Degrad Stab. 2009;94:1542–7.

    Article  CAS  Google Scholar 

  11. Bracco P, Brunella V, Zanetti M, Luda MP, Costa L. Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stab. 2007;92:2155–62.

    Article  CAS  Google Scholar 

  12. Shen J, Gao G, Liu X, Fu J. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants. Clin Orthop Relat Res. 2015;473:760–6.

    Article  Google Scholar 

  13. Peltzer M, Wagner JR, Jiménez A. Thermal characterization of UHMWPE stabilized with natural antioxidants. J Therm Anal Calorim. 2007;87:493–7.

    Article  CAS  Google Scholar 

  14. Al-Malaika S, Ashley H, Issenhuth S. The antioxidant role of α-tocopherol in polymers. I. The nature of transformation products of α-tocopherol formed during melt processing of LDPE. J Polym Sci Polym Chem. 1994;32:3099–113.

    Article  CAS  Google Scholar 

  15. Al-Malaika S, Goodwin C, Issenhuth S, Burdick D. The antioxidant role of α-tocopherol in polymers II. Melt stabilising effect in polypropylene. Polym Degrad Stab. 1996;64:145–51.

    Article  Google Scholar 

  16. Litwinienko G, Dabrowska M. Thermogravimetric investigation of antioxidant activity of selected compounds in lipid oxidation. J Therm Anal Calorim. 2001;65:411–7.

    Article  CAS  Google Scholar 

  17. Al-Malaika S, Issenhuth S, Burdick D. The antioxidant role of vitamin E in polymers V. Separation of stereoisomers and characterisation of other oxidation products of dl-α-tocopherol formed in polyolefins during melt processing. Polym Degrad Stab. 2001;73:491–503.

    Article  CAS  Google Scholar 

  18. Kaya I, Dogan F, Gul M. A new schiff base epoxy oligomer resin: synthesis, characterization, and thermal decomposition kinetics. J Appl Polym Sci. 2011;121:3211–22.

    Article  CAS  Google Scholar 

  19. Thumsorn S, Yamada K, Yew WL, Hamada H. Thermal decomposition kinetic and flame retardancy of CaCO3 filled recycled polyethylene terephthalate/recycled polypropylene blend. J Appl Polym Sci. 2013;127:1245–56.

    Article  CAS  Google Scholar 

  20. Hazewindus M, Haenen GRMM, Weseler AR, Bast A. The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and a-tocopherol. Food Chem. 2012;132:654–8.

    Article  Google Scholar 

  21. Ameta RK, Singh M. A thermodynamic in vitro antioxidant study of vitamins B (niacin and niacin amide) and C (ascorbic acid) with DPPH through UV spectrophotometric and physicochemical methods. J Mol Liq. 2014;195:40–6.

    Article  CAS  Google Scholar 

  22. Souza VC, Oliveira JE, Lima SJG, Silva LB. Influence of Vitamin C on morphological and thermal behaviour of biomedical UHMWPE. Macromol Symp. 2014;344:8–13.

    Article  CAS  Google Scholar 

  23. Pielichowski K, Njuguna J. Thermal degradation of polymeric materials. Shawbury: Rapra Technology Ltd; 2005.

    Google Scholar 

  24. Kim JY, Kim DK, Kim SH. Thermal decomposition behavior of poly(ethylene 2,6-naphthalate)/silica nanocomposites. Polym Compos. 2009;30:1779–87.

    Article  CAS  Google Scholar 

  25. Flynn J, Wall LA. A Quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  27. Vyazovkin S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49:1493–9.

    Article  CAS  Google Scholar 

  28. Doyle CJ. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  29. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  30. Chao M, Li W, Wang X. Thermal decomposition kinetics and anti-oxidation performance of commercial antioxidants. J Therm Anal Calorim. 2015;120:1921–8.

    Article  CAS  Google Scholar 

  31. Tang W, Li XG, Yan D. Thermal decomposition kinetics of thermotropic copolyesters made from trans-p-hydroxycinnamic acid and p-hydroxybenzoic acid. J Appl Polym Sci. 2004;91:445–54.

    Article  CAS  Google Scholar 

  32. Denq BL, Chiu WY, Lin KF. Kinetic model of thermal degradation of polymers for nonisothermal process. J Appl Polym Sci. 1997;66:1855–68.

    Article  CAS  Google Scholar 

  33. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  34. Shih YF. Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. J Polym Sci Polym Phys. 2009;47:1231–9.

    Article  CAS  Google Scholar 

  35. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.

    Article  CAS  Google Scholar 

  36. Jahan MS, Walter BM. Macroradical reaction in ultra-high molecular weight polyethylene in the presence of vitamin E. Radiat Phys Chem. 2011;80:281–5.

    Article  CAS  Google Scholar 

  37. Oral E, Rowell SL, Muratoglu OK. The effect of a-tocopherol on the oxidation and free radical decay in irradiated UHMWPE. Biomaterial. 2006;27:5580–7.

    Article  CAS  Google Scholar 

  38. Lee JY, Liao Y, Nagahata R, Horiuchi S. Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer. 2006;47:7970–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Brazilian Coordination for the Improvement in Higher-Level Personnel for scholarships. Moreover, characterizations provided by the Fast Solidification Laboratory of the Federal University of Paraiba and Northeast Center for Strategic Technologies (CETENE) are acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, V.C., Santos, E.B.C., Mendonça, A.V. et al. Thermal behavior and decomposition kinetic studies of biomedical UHMWPE/vitamin C compounds. J Therm Anal Calorim 134, 2097–2105 (2018). https://doi.org/10.1007/s10973-018-7321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7321-9

Keywords

Navigation