Skip to main content
Log in

The effect of mixture ratio on combustion characteristics of n-propyl alcohol–water binary mixture

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion characteristics of n-propyl alcohol–water blended fuel with various mixture ratios were investigated. A round pool with a diameter of 30 cm was employed. Mass loss rate, temperature profiles at flame centerline, and flame shape were recorded during the combustion process. A balance was employed to measure the fuel mass loss, and a digital video camera with the maximum capture rate of 25 frames per second was employed for flame images. The centerline temperature and fuel temperature were measured by K-type thermocouples. The results show that the burning behaviors of the blended fuel are less active than that of the pure fuel. Compared with individual pure fuel, the mass loss rate, flame height, and centerline temperature of the blended fuel are lower. The mass loss rate and flame height profiles clearly exhibit three typical stages: initial development stage, quasi-steady burning stage, and decay stage. Azeotropic phenomenon can be observed in the process of the blended fuel combustion, and the azeotropism dominates the whole quasi-steady burning stage. The correlations of mass loss rate, mean and maximum flame heights and the centerline temperature were proposed for n-propyl alcohol–water blended fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\eta\) :

n-Propyl alcohol mass fraction in the blended fuel

\(Me\) :

n-Propyl alcohol mass, g

\(Mt\) :

Total mass of blended fuel, g

\(\dot{m}^{\prime \prime }\) :

Average mass loss rate, kg m−2 s−1, in Eq. (1)

\(I\left( H \right)\) :

Intermittent rate

H :

Flame height, m

D :

Diameter of pool, m

\(\dot{Q}\) :

Heat release rate, J s−1

\(\dot{m}\) :

Mass loss rate, kg m−2 s−1

\(\Delta H_{\text{c}}\) :

Calorific value of fuel, J kg−1

\(\Delta T_{0}\) :

Centerline values of mean excess temperature, K

\(T_{\infty }\) :

Ambient temperature, K

\(\dot{Q}_{\text{c}}\) :

Convective heat release rate, J s−1

\(\alpha\) :

Convective heat coefficient for above blended fuel

\(z\) :

Elevation above the fire source, m

\(z_{0}\) :

Elevation of the virtual origin above the fire source, m

References

  1. Mushrush GW, Hughes JM, Willauer HD. Blends of soybean biodiesel with petroleum diesel: advantages. Ind Eng Chem Res. 2013;52:1764–8.

    Article  CAS  Google Scholar 

  2. Adiga KC, Ram ANS, Shah DO, Moudgil BM. Blending of residual oil with fuel grade ethanol: compatibility, rheology, and ignition characteristics. Ind Eng Chem Prod Res Dev. 1984;23:638–43.

    Article  CAS  Google Scholar 

  3. Mehta RN, Chakraborty M, Mahanta P, Parikh PA. Evaluation of fuel properties of butanol–biodiesel–diesel blends and their impact on engine performance and emissions. Ind Eng Chem Res. 2010;49:7660–5.

    Article  CAS  Google Scholar 

  4. Silva NDLD, Santander CMG, Rueda SMG, Maciel MRW, Filho RM. Characterization of blend properties of castor biodiesel and bioethanol. Ind Eng Chem Res. 2013;52:15504–8.

    Article  Google Scholar 

  5. Qi DH, Chen H, Matthews RD, Bian YZ. Combustion and emission characteristics of ethanol–biodiesel–water micro-emulsions used in a direct injection compression ignition engine. Fuel. 2010;89:958–64.

    Article  CAS  Google Scholar 

  6. Armas O, García-Contreras R, Ángel R. Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle. Appl Energy. 2013;107:183–90.

    Article  CAS  Google Scholar 

  7. Şehmus A, Öner C, Yaşar F, Adin H. Effect of n-butanol blending with a blend of diesel and biodiesel on performance and exhaust emissions of a diesel engine. Ind Eng Chem Res. 2011;50:9425–30.

    Article  Google Scholar 

  8. Sato T, Chiba A, Nozaki R. Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis. J Chem Phys. 2000;112:2924–32.

    Article  CAS  Google Scholar 

  9. Dixit S, Crain J, Poon WC, Finney JL, Soper AK. Molecular segregation observed in a concentrated alcohol–water solution. Nature. 2002;416:829–32.

    Article  CAS  Google Scholar 

  10. Schälike S, Wehrstedt K-D, Schönbucher A. Flame heights of di-tert-butyl peroxide pool fires—experimental study and modelling. In: Rademaeker ED, editor. Proceedings of the 5th international conference on safety and environment in process and power industry. 26th ed. Milano: Assoziatione Italiana di Ingegneria Chimica; 2012. p. 363–8.

    Google Scholar 

  11. Stefan S, Hyunjoo C, Kirti Bhushan M, Klaus-Dieter W, Axel S. Mass burning rates of Di-tert-butyl peroxide pool fires—experimental study and modeling. Combust Sci Technol. 2013;185:408–19.

    Article  Google Scholar 

  12. Schälike S, Mishra KB, Wehrstedt KD, Schönbucher A. Limiting distances for flame merging of multiple n-heptane and di-tert-butyl peroxide pool fires. BAM. 2013;32:121–6.

    Google Scholar 

  13. Chaudhary A, Gupta A, Kumar S, Kumar R. Thermal environment induced by jatropha oil pool fire in a compartment. J Therm Anal Calorim. 2017;127:2397–415.

    Article  CAS  Google Scholar 

  14. Liu Q, Ma Q, Zhang H, Yang R, Wei D, Lin C-H. Experimental study on n-heptane pool fire behavior under dynamic pressure in an altitude chamber. J Therm Anal Calorim. 2017;128:1151–63.

    Article  CAS  Google Scholar 

  15. Consalvi JL, Liu F. Radiative heat transfer in the core of axisymmetric pool fires—I: evaluation of approximate radiative property models. Int J Therm Sci. 2014;84:104–17.

    Article  CAS  Google Scholar 

  16. Consalvi JL. Influence of turbulence–radiation interactions in laboratory-scale methane pool fires. Int J Therm Sci. 2012;60:122–30.

    Article  CAS  Google Scholar 

  17. Cheung SCP, Yeoh GH. A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. Int J Therm Sci. 2009;48:2187–202.

    Article  CAS  Google Scholar 

  18. Ding Y, Wang C, Lu S. The effect of azeotropism on combustion characteristics of blended fuel pool fire. J Hazard Mater. 2014;271:82–8.

    Article  CAS  Google Scholar 

  19. Gore J, Klassen M, Hamins A, Kashiwagi T. Fuel property effects on burning rate and radiative transfer from liquid pool flames. Fire Saf Sci. 1991;3:395–404.

    Article  Google Scholar 

  20. Hamins A, Klassen M, Gore J, Kashiwagi T. Estimate of flame radiance via a single location measurement in liquid pool fires. Combust Flame. 1991;86:223–8.

    Article  CAS  Google Scholar 

  21. Ricks A, Blanchat TK. Hydrocarbon characterization experiments in fully turbulent fires. Sandia Report. 2007.

  22. Han K, Chen H, Yang B, Ma X, Song G, Li Y. Experimental investigation on droplet burning characteristics of diesel-benzyl azides blend. Fuel. 2017;190:32–40.

    Article  CAS  Google Scholar 

  23. Parag S, Raghavan V. Experimental investigation of burning rates of pure ethanol and ethanol blended fuels. Combust Flame. 2009;156:997–1005.

    Article  CAS  Google Scholar 

  24. Lide DR, Kehiaian HV. CRC Handbook of thermophysical and thermochemical data. Boca Raton: CRC Press; 1994.

    Google Scholar 

  25. Horsley LH. Table of azeotropes and nonazeotropes. Anal Chem. 1947;19:508–600.

    Article  CAS  Google Scholar 

  26. Liu J, Chen M, Lin X, Yuen R, Wang J. Impacts of ceiling height on the combustion behaviors of pool fires beneath a ceiling. J Therm Anal Calorim. 2016;126:881–9.

    Article  CAS  Google Scholar 

  27. Chatris JM, Quintela J, Folch J, Planas E, Arnaldos J, Casal J. Experimental study of burning rate in hydrocarbon pool fires. Combust Flame. 2001;126:1373–83.

    Article  CAS  Google Scholar 

  28. Yan WG, Wang CJ, Guo J. One extended OTSU flame image recognition method using RGBL and stripe segmentation. Appl Mech Mater. 2011;121–126:2141–5.

    Article  Google Scholar 

  29. Chen ZB, Hu LH, Huo R, Zhu S. Flame height characteristics based on image luminance. J Combust Sci Technol. 2008;14:557–61.

    CAS  Google Scholar 

  30. Zukoski EE, Cetegen BM, Kubota T. Visible structure of buoyant diffusion flames. In: Symposium on combustion, vol. 20; 1985. p. 361–6.

    Article  Google Scholar 

  31. Heskestad G. Luminous heights of turbulent diffusion flames. Fire Saf J. 1983;5:103–8.

    Article  Google Scholar 

  32. Heskestad G. Engineering relations for fire plumes. Fire Saf J. 1984;7:25–32.

    Article  Google Scholar 

  33. Hurley MJ, Gottuk DT, Jr JRH, Harada K, Kuligowski ED, Puchovsky M, et al. SFPE handbook of fire protection engineering. Industrial safety & environmental protection, vol. 29; 2016. p. 487–500.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, C., Zhang, J. et al. The effect of mixture ratio on combustion characteristics of n-propyl alcohol–water binary mixture. J Therm Anal Calorim 134, 2255–2264 (2018). https://doi.org/10.1007/s10973-018-7281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7281-0

Keywords

Navigation