Skip to main content
Log in

Heat required and kinetics of sugarcane straw pyrolysis by TG and DSC analysis in different atmospheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Herein, it was investigated the heat required and the kinetics of oxidative pyrolysis of sugarcane straw by thermogravimetric analysis and differential scanning calorimetry. Thermal analyses were carried out at different temperatures (5, 10, and 20 K min−1) and atmospheres (different oxygen concentrations with N2). The pyrolysis process had lower track degradation in oxidative atmospheres. The Flynn–Ozawa–Wall model kinetics parameters revealed that the activation energy under the atmosphere with 3% O2 had the lowest range (101–130 kJ mol−1). Hence, it was demonstrated that oxidative pyrolysis could be a low energy cost and environmental friendly process for converting sugarcane straw to valuable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daniyanto S, Deendarlianto BA. Torrefaction of Indonesian sugar cane bagasse to improve bio-syngas quality for gasification process. Energy Proc. 2015;68:157–66.

    Article  CAS  Google Scholar 

  2. Kuan W, Huang Y, Chang CC, Lo SL. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresour Technol. 2013;146:324–9.

    Article  CAS  PubMed  Google Scholar 

  3. Amutio M, Lopez G, Aguado R, Bilbao J, Olazar M. Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties. Energy Fuels. 2012;2:1353–62.

    Article  CAS  Google Scholar 

  4. Mesa-Pérez JM, Rocha JD, Barbosa-Cortez LA, Penedo-Medina M, Luengo CA, Cascarosa E. Fast oxidative pyrolysis of sugarcane straw in a fluidized bed reactor. Appl Therm Eng. 2013;56:167–75.

    Article  CAS  Google Scholar 

  5. Mendonça FG, Rosmaninho MG, Fonseca PX, Soares RR, Ardisson JD, Tristão JC, Lago RM. Use of iron and bio-oil wastes to produce highly dispersed Fe/C composites for the photo-Fenton reaction. Environ Sci Pollut Res. 2017;24(7):6151–6.

    Article  CAS  Google Scholar 

  6. Mendonca FG, Gomes JPM, Tristao JC, Ardisson JD, Soares RR, Lago RM. Novel reductive extraction process to convert the bio-oil aqueous acid fraction into fuels with the recovery of iron from wastes. Fuel. 2016;184:36–41.

    Article  CAS  Google Scholar 

  7. Bai F, Guo W, Lu X, Liu Y, Guo M, Li Q, Sun Y. Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel. 2015;146:111–8.

    Article  CAS  Google Scholar 

  8. Aboyade AO, Gorgens JF, Carrier M, Meyer EL, Knoetze JH. Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues. Fuel Process Technol. 2013;106:310–20.

    Article  CAS  Google Scholar 

  9. Slopiecka K, Bartocci P, Fantozzi R. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  10. Biney PO, Gyamerah M, She J, Menezes B. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model. Bioresour Technol. 2015;179:113–22.

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho WS, Oliveira TJ, Cardoso CR, Ataíde CH. Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum. Chem Eng Res Des. 2015;95:337–45.

    Article  CAS  Google Scholar 

  12. Chen H, Dou B, Song Y, Xu Y, Zhang Y, Wang C, Zhang X, Tan C. Pyrolysis characteristics of sucrose biomass in a tubular reactor and a thermogravimetric analysis. Fuel. 2012;95:425–30.

    Article  CAS  Google Scholar 

  13. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 2012;38:68–94.

    Article  CAS  Google Scholar 

  14. Pattiya A. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidized-bed reactor. Bioresour Technol. 2011;102:1959–67.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Xiao R, Wang D, He G, Shao S, Zhang J, Zhong Z. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour Technol. 2011;102:4258–64.

    Article  CAS  PubMed  Google Scholar 

  16. Cardoso CR, Ataíde CH. Micropyrolysis of tobacco powder at 500 °C: influence of ZnCl2 and MgCl2 contents on the generation of products. Chem Eng Commun. 2014;202:484–92.

    Article  CAS  Google Scholar 

  17. Santos KG, Lira TS, Gianesella M, Lobato FS, Murata VV, Barrozo MAS. Bagasse pyrolysis: a comparative study of kinetic models. Chem Eng Commun. 2012;199:109–21.

    Article  CAS  Google Scholar 

  18. Dong C, Zhang Z, Lu Q, Yang Y. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers Manag. 2012;57:49–59.

    Article  CAS  Google Scholar 

  19. Mothé CG, Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.

    Article  CAS  Google Scholar 

  20. Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol. 2015;196:136–44.

    Article  CAS  PubMed  Google Scholar 

  21. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  22. Mishra G, Bhaskar T. Non isothermal model free kinetics for pyrolysis of rice straw. Bioresour Technol. 2014;169:614–21.

    Article  CAS  PubMed  Google Scholar 

  23. He F, Yi W, Bai X. Investigation on caloric requirement of biomass pyrolysis using TG-DSC analyzer. Energy Convers Manag. 2006;47:2461–9.

    Article  Google Scholar 

  24. Velden MV, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolisys reaction. Renew Energy. 2010;35:232–42.

    Article  CAS  Google Scholar 

  25. Mothé CG, Azevedo AD. Análise Térmica de materiais. São Paulo: Ieditora; 2002.

    Google Scholar 

  26. Mesa-Pérez JM, Rocha JC, Barbosa-Cortez LA, Penedo-Medina M, Luengo CA, Cascarosa E. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Appl Therm Eng. 2013;56:167–75.

    Article  CAS  Google Scholar 

  27. Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with is production and utilization. Renew Sustain Energy Rev. 2010;14:919–37.

    Article  CAS  Google Scholar 

  28. Jung SH, Kang BS, Kim JS. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J Anal Appl Pyrol. 2008;82:240–7.

    Article  CAS  Google Scholar 

  29. Maziero P, Oliveira Neto M, Machado D, Batista T, Cavalheiro CCS, Neumannc MG, Craievichd AF, Moraes Rocha GJ. Structural features of lignin obtained at different alkaline oxidation conditions from sugarcane bagasse. Ind Crops Prod. 2012;35:61–9.

    Article  CAS  Google Scholar 

  30. Mothé CG, Azevedo AD. Análise Térmica de Materiais. 2ª edição ed. São Paulo: Artliber Editora; 2009.

    Google Scholar 

  31. Polleto M, Dettenborn J, Pistor V, Zeni M, Zattera AJ. Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolysis of wood. Mater Res. 2010;13:375–9.

    Article  Google Scholar 

  32. Vekemans O, Laviolette JP, Chaouki J. Thermal behavior of an engineered fuel and its constituents for a large range of heating rates with emphasis on heat transfer limitations. Thermochim Acta. 2015;601:54–62.

    Article  CAS  Google Scholar 

  33. Rueda-Ordónez YJ, Tannous K. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air. Bioresour Technol. 2016;211:231–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  35. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2011;95:305–11.

    Article  CAS  Google Scholar 

  36. Nassar MM, Ashour EA, Wahid SS. Thermal characteristics of bagasse. J Appl Polym Sci. 1996;61:885–90.

    Article  CAS  Google Scholar 

  37. Mishra G, Bhaskar T. Non isothermal model free kinetics for pyrolysis of rice straw. Bioresour Technol. 2014;169:614–21.

    Article  CAS  PubMed  Google Scholar 

  38. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi J. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CNPq, CAPES and FAPEMIG for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Reis Soares.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis Ferreira, R.A., da Silva Meireles, C., Assunção, R.M.N. et al. Heat required and kinetics of sugarcane straw pyrolysis by TG and DSC analysis in different atmospheres. J Therm Anal Calorim 132, 1535–1544 (2018). https://doi.org/10.1007/s10973-018-7149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7149-3

Keywords

Navigation