Skip to main content
Log in

Effects of ester-terminated glycidyl azide polymer on the thermal stability and decomposition of GAP by TG-DSC-MS-FTIR and VST

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As a kind of energetic plasticizer, ester-terminated glycidyl azide polymer (GAPE) has a potential for being mixed with energetic binder glycidyl azide polymer (GAP) to enable the system a higher overall energy level. To determine whether the mentioned system can be put into practical use, TG-DSC-MS-FTIR was applied to characterize thermal behaviours of GAP, GAPE and 50/50 GAP/GAPE mixture, and VST was used to decide the compatibility of GAP and GAPE. It turns out that GAPE is compatible with GAP. Decomposition of the mixture can be divided into two steps, rapid decomposition with obvious heat release and self-catalysis decomposition, showing the same tendency with the decomposition of GAP and GAPE. Based on the heating rate of 2, 5, 10 and 15 °C min−1, the kinetics triplets of the three samples’ decomposition were calculated, and the decomposition mechanism was obtained. Results show that the decomposition process was governed by the decomposition of GAPE, which started with the scission of –N3. The critical temperatures of thermal explosion of GAP, GAPE and the mixture were also calculated. Substituting the critical temperature to the reaction rate equation to verify the decomposition process, the dominating role of GAPE in this decomposition of mixture was affirmed. Therefore, GAP/GAPE mixture has a promising future in high-energy propellants/explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Manu SK, Varghese TL, Mathew S, et al. Studies on structure property correlation of cross-linked glycidyl azide polymer. J Appl Polym Sci. 2009;114(6):3360–8.

    Article  CAS  Google Scholar 

  2. Gaur B, Lochab B, Choudhary V, et al. Azido polymers-energetic binders for solid rocket propellants. J Macromol Sci Part C. 2003;43(4):505–45.

    Article  CAS  Google Scholar 

  3. Kubota N, Sonobe T. Combustion mechanism of azide polymer. Propellants Explos Pyrotech. 1988;13(6):172–7.

    Article  CAS  Google Scholar 

  4. Tang CJ, Lee Y, Litzinger TA. Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition. Combust Flame. 1999;117(1–2):244–56.

    Article  CAS  Google Scholar 

  5. Deng J, Li G, Xia M, et al. Improvement of mechanical characteristics of glycidyl azide polymer binder system by addition of flexible polyether. J Appl Polym Sci. 2016;133(35):1–7.

    Article  CAS  Google Scholar 

  6. Frankel MB, Grant LR, Flanagan JE. Historical development of glycidyl azide polymer. J Propuls Power. 2012;8(3):560–3.

    Article  Google Scholar 

  7. Kubota N, Kuwahara T. Combustion of energetic fuel for ducted rockets (I). Propellants Explos Pyrotech. 1991;16(2):51–4.

    Article  CAS  Google Scholar 

  8. Kubota N, Miyata K, Kuwahara T, et al. Energetic solid fuels for ducted rockets (II). Propellants Explos Pyrotech. 1991;16(6):287–92.

    Article  CAS  Google Scholar 

  9. Keiichi H, Motoyasu K. Combustion mechanism of glycidyl azide polymer. Propellants Explos Pyrotech. 1996;21(3):160–5.

    Article  Google Scholar 

  10. Menke K, Eisele S. Rocket propellants with reduced smoke and high burning rates. Propellants Explos Pyrotech. 1997;22(3):112–9.

    Article  CAS  Google Scholar 

  11. Vandenberg, E.J. Polyethers containing azidomethyl side chains. US, US3645917. 1972.

  12. Frankel MB, Grant LR, Flanagan JE. Historical development of glycidyl azide polymer. J Propul Power. 2012;8(3):560–3.

    Article  Google Scholar 

  13. You JS, et al. A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes. Macromol Res. 2010;18(12):1226–32.

    Article  CAS  Google Scholar 

  14. Sekkar V, Bhagawan SS, Prabhakaran N. Polyurethanes based on hydroxyl terminated polybutadiene: modelling of network parameters and correlation with mechanical properties. Polymer. 2000;41(18):6773–86.

    Article  CAS  Google Scholar 

  15. Selim K, Özkar S, Yilmaz L. Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants. J Appl Polym Sci. 2000;77(3):538–46.

    Article  CAS  Google Scholar 

  16. Stacer RG, Husband DM. Molecular structure of the ideal solid propellant binder. Propellants Explos Pyrotech. 1991;16(4):167–76.

    Article  CAS  Google Scholar 

  17. Ampleman, G. Synthesis of a diazido terminated energetic plasticizer. US, US5124463. 1992.

  18. Flanagan, J.E. Glycidyl azide polymer esters. US, US4938812. 1990.

  19. Du XS. Advances on research and development in endurance plasticizer in China. Plast Addit. 2009;77:9–12.

    Google Scholar 

  20. Manu SK, Varghese TL, Mathew S, Ninan KN. Compatibility of glycidyl azide polymer with hydroxyl terminated polybutadiene and plasticizers. J Propuls Power. 2009;25(2):533–6.

    Article  CAS  Google Scholar 

  21. Fazlıoğlu H, Hacaloğlu J. Thermal decomposition of glycidyl azide polymer by direct insertion probe mass spectrometry. J Anal Appl Pyrol. 2002;63(2):327–38.

    Article  Google Scholar 

  22. Korobeinichev OP, et al. Mass spectrometric study of combustion and thermal decomposition of GAP. Combust Flame. 2002;129(1):136–50.

    Article  CAS  Google Scholar 

  23. Arisawa H, Brill TB. Thermal decomposition of energetic materials 71: structure-decomposition and kinetic relationships in flash pyrolysis of glycidyl azide polymer (GAP). Combust Flame. 1998;112(4):533–44.

    Article  CAS  Google Scholar 

  24. Sun Y, Li S. The effect of nitrate esters on the thermal decomposition mechanism of GAP. J Hazard Mater. 2008;154(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  25. Shen SM, Leu AL, Chen SI, Yeh HC. Thermal-characteristics of GAP, GAP/BDNPA/BDNPF and PEG/BDNPA/BDNPF and the energetic composites thereof. Thermochim Acta. 1991;180:251–8.

    Article  CAS  Google Scholar 

  26. De Klerk W, Meer NVD, Eerligh R. Microcalorimetric study applied to the comparison of compatibility tests (VST and IST) of polymers and propellants. Thermochim Acta. 1995;269–70(1):231–43.

    Article  Google Scholar 

  27. Pei JF, et al. Compatibility study of BAMO–GAP copolymer with some energetic materials. J Therm Anal Calorim. 2016;124(3):1301–7.

    Article  CAS  Google Scholar 

  28. Zhang W, Jiao Q, Yan S, Ren H, Guo X. Influence of purification of energetic binders by vacuum rotary evaporation in different conditions. In: The 20th seminar new trends in research of energetic materials, Pardubice CZ; 2017.

  29. Liu ZR. Thermal analyses for energetic materials. Beijing: National Defense Industry Press; 2008.

    Google Scholar 

  30. You JS, et al. Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant. Thermochim Acta. 2012;537:51–6.

    Article  CAS  Google Scholar 

  31. Sreekumar P, Ang HG. Thermal decomposition kinetics of a mixture of energetic polymer and nitramine oxidizer. Thermochim Acta. 2007;459:26–33.

    Article  CAS  Google Scholar 

  32. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  34. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  35. Hu R, Gao S, Zhao F, Shi Q, Zhang T, Zhang J. Thermal analysis kinetic. 2nd ed. Beijing: Science Press; 2008 (in Chinese).

    Google Scholar 

  36. Šatava V, Šesták JJ. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. Therm Anal. 1975;8(3):477–89.

    Article  Google Scholar 

  37. Agrawal R. A new equation for modeling nonisothermal reactions. J Therm Anal Calorim. 1987;32(1):149–56.

    Article  CAS  Google Scholar 

  38. Tonglai Z, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

  39. Huang C-C, Tzueng-Shien W. A simple method for estimating the autoignition temperature of solid energetic materials with a single non-isothermal DSC or DTA curve. Thermochim Acta. 1994;239:105–14.

    Article  CAS  Google Scholar 

  40. Yi J-H, et al. Thermal behaviors, non isothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. J Hazard Mater. 2010;181(1):432–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Ren, H., Sun, Y. et al. Effects of ester-terminated glycidyl azide polymer on the thermal stability and decomposition of GAP by TG-DSC-MS-FTIR and VST. J Therm Anal Calorim 132, 1883–1892 (2018). https://doi.org/10.1007/s10973-018-7063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7063-8

Keywords

Navigation