Skip to main content
Log in

New biologically active mixed-ligand Co(II) and Ni(II) complexes of enrofloxacin

Synthesis, spectral study and thermal behaviour

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New mixed-ligand Co(II) and Ni(II) complexes with enrofloxacin and 1,10-phenanthroline/8-hydroxyquinoline have been synthesized. The metal complexes have been characterized by elemental analyses, molar conductance, FT-IR, solid reflectance, magnetic moment, thermal analyses, X-ray powder diffraction (XRD) and SEM analysis. Conductance measurements indicate that all the complexes are non-electrolytes. Spectral IR data showed that the deprotonated enrofloxacin is bidentately bound to the metal ion through the pyridone oxygen and the carboxylated oxygen; 1,10-phenanthroline acts as neutral bidentate ligand coordinated through two nitrogen donor atoms, and the deprotonated 8-hydroxyquinoline is coordinated through nitrogen and oxygen donor atoms. The geometry of the complexes was elucidated with solid reflectance UV and magnetic moments. Thermal analysis recorded that TG/DTG/DSC experiments revealed the thermal stability of metal complexes and confirmed their compositions suggested by the analytical data. In addition to experimental data, a molecular modelling study has been performed to establish the optimized geometries of metal complexes. The XRD analysis of powders evidences the nanocrystalline nature of all complexes. The results are in agreement with molecular modelling data. SEM images revealed highly agglomerated particles with irregular shape with sizes in the micrometre range. The ligand and their metal complexes were screened for their antimicrobial activity against Escherichia coli 25922, Staphylococcus aureus 25923, Pseudomonas aeruginosa 27853 and Candida albicans 10231. The metal complexes were also investigated for their cytotoxicity using an in vitro assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suk JE, Semenza JC. Future infectious disease threats to Europe. Am J Pub Health. 2011;101:2068–79.

    Article  Google Scholar 

  2. Popa M, Hussien MD, Cirstea A, Lazar V, Bezirtzoglou E, Chifiriuc MC, Sakizlian M, Stavropoulou E, Bertesteanu S. Insights on metal based dental implants and their interaction with the surrounding tissues. Curr Top Med Chem. 2015;15:1614–21.

    Article  CAS  PubMed  Google Scholar 

  3. Bertesteanu SVG, Popescu CR, Grigore R, Popescu B. Pharyngoesophageal junction neoplasia–therapeutic management. Chirurgia. 2012;107:33–8.

    CAS  PubMed  Google Scholar 

  4. Aljahdali M, EL-Sherif AA. Synthesis, characterization, molecular modelling and biological activity of mixed ligand complexes of Cu(II), Ni(II) and Co(II) based on 1,10-phenantroline and novel thiosemicarbazone. Inorg Chim Acta. 2013;407:58–68.

    Article  CAS  Google Scholar 

  5. Agwara MO, Ndifon PT, Ndosiri NB, Paboudam AG, Yufanyi DM, Mohamadou A. Synthesis, characterisation and antimicrobial activities of cobalt(II), copper(II) and zinc(II) mixed-ligand complexes containing 1,10-phenanthroline and 2,2′-bipyridine. Bull Chem Soc Ethiopia. 2010;24:383–9.

    Article  CAS  Google Scholar 

  6. Patil SS, Thakur GA, Shaikh MM. Synthesis, spectral, thermal and antibacterial investigations of mixed ligand complexes of thorium(IV) derived from 8-hydroxyquinoline and some amino acids. Acta Pol Pharm Drug Res. 2012;69:1087–93.

    CAS  Google Scholar 

  7. Saha DK, Sandbhor U, Shirisha K, Padhye S, Deobagkar D, Ansond CE, Powell AK. A novel mixed-ligand antimycobacterial dimeric copper complex of ciprofloxacin and phenanthroline. Bioorg Med Chem Lett. 2004;14:3027–32.

    Article  CAS  PubMed  Google Scholar 

  8. Irgi E, Geromichalos G, Balala S, Kljun J, Kalogiannis S, Papadopoulos A, Turel I, Psomas G. Cobalt(II) complexes with the quinolone antimicrobial drug oxolinic acid: structure and biological perspectives. RSC Adv. 2015;5:36353–67.

    Article  CAS  Google Scholar 

  9. Dhanaraj CJ, Johnson J. Quinoxaline based bio-active mixed ligand transition metal complexes: synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies. J Photochem Photobiol B. 2015;151:100–9.

    Article  CAS  PubMed  Google Scholar 

  10. Darawsheh M, Abu Ali H, Abuhijleh AL, Rappocciolo E, Akkawi M, Jaber S, Maloul S, Hussein Y. New mixed ligand zinc(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties. Eur J Med Chem. 2014;82:152–63.

    Article  CAS  PubMed  Google Scholar 

  11. Protogeraki C, Andreadou EG, Perdih F, Turel I, Pantazaki AA, Psomas G. Cobalt(II) complexes with the antimicrobial drug enrofloxacin: structure, antimicrobial activity, DNA and albumin-binding. Eur J Med Chem. 2014;86:189–201.

    Article  CAS  PubMed  Google Scholar 

  12. Farrell N. Transition metal complexes as drugs and chemotherapeutic agents. Dordrecht: Kluwer; 1989.

    Book  Google Scholar 

  13. Turel I. The interactions of metal ions with quinolone antibacterial agents. Coord Chem Rev. 2002;232:27–47.

    Article  CAS  Google Scholar 

  14. Uivarosi V. Metal complexes of quinolone antibiotics and their applications: an update. Molecules. 2013;18:11153–97.

    Article  CAS  PubMed  Google Scholar 

  15. Reiss R, Florea S, Căproiu T, Stănica N. Synthesis, characterization and antibacterial studies of some transition metals with the Schiff base N-(2-Furanylmethylene)-3-aminodibenzofuran. Turkish J Chem. 2009;33:775–83.

    CAS  Google Scholar 

  16. Reiss A, Mureseanu M. Transition metal complexes with ligand containing thioamide moiety: synthesis, characterization and antibacterial activity. J Chil Chem Soc. 2012;57:1199–204.

    Article  Google Scholar 

  17. Reiss A, Chifiriuc MC, Amzoiu E, Spînu CI. Transition METAL(II) complexes with cefotaxime-derived schiff base: synthesis, characterization and antimicrobial studies. Bioinorg Chem Appl. 2014, Article ID 926287.

  18. Reiss A, Samide A, Ciobanu G, Dăbuleanu I. Synthesis, spectral characterization and thermal behaviour of new metal (II) complexes with Schiff Base derived from amoxicillin. J Chil Chem Soc. 2015;60:3074–9.

    Article  CAS  Google Scholar 

  19. Constantinescu CD, Rotaru A, Nedelcea A, Dinescu M. Thermal behaviour and matrix-assisted pulsed laser evaporation deposition of functional polymeric materials thin films with potential use in optoelectronics. Mat Sci Semicond Proc. 2015;30:242–9.

    Article  CAS  Google Scholar 

  20. Rotaru A. Thermal and kinetic study of hexagonal boric acid versus triclinic boric acid in air flow. J Therm Anal Calorim. 2017;127:755–63.

    Article  CAS  Google Scholar 

  21. Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim. 2017;127:21–32.

    Article  CAS  Google Scholar 

  22. Rotaru A. Discriminating within the kinetic models for heterogeneous processes of materials by employing a combined procedure under TKS-SP 2.0 software. J Therm Anal Calorim. 2016;126:919–32.

    Article  CAS  Google Scholar 

  23. Krajnikova A, Rotaru A, Gyoryova K, Homzova K, Manolea HO, Kovarova J, Hudecova D. Thermal behaviour and antimicrobial assay of some new zinc(II) 2-aminobenzoate complex compounds with bioactive ligands. J Therm Anal Calorim. 2015;120:73–83.

    Article  CAS  Google Scholar 

  24. Rotaru A, Gosa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Therm Anal Calorim. 2015;120:73–83.

    Article  CAS  Google Scholar 

  25. Rotaru A, Bratulescu G, Rotaru P. Thermal analysis of azoic dyes: part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.

    Article  CAS  Google Scholar 

  26. Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.

    Article  CAS  Google Scholar 

  27. Rotaru A. Thermal analysis and kinetic study of Petrosani bituminous coal from Romania in comparison with a sample of Ural bituminous coal. J Therm Anal Calorim. 2012;110:1283–91.

    Article  CAS  Google Scholar 

  28. Roisinel T, Rodriguez-Carvajal J. A windows tool for powder diffraction patterns analysis. In: Proceedings of the seventh European powder diffraction conference (EPDIC 7), 2000, p. 118. See also http://www-llb.cea.fr/Fullweb/winplotr/winplotr.htm.

  29. Olar R, Badea M, Marinescu D, Chifiriuc MC, Bleotu C, Grecu MN, Iorgulescu E, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adhered microbial strains. Eur J Med Chem. 2010;45:2868–75.

    Article  CAS  PubMed  Google Scholar 

  30. Limban C, Chifiriuc MC. Antibacterial activity of new dibenzoxepinone oximes with fluorine and trifluoromethyl group substituents. Int J Mol Sci. 2011;12:6432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nica IC, Stan MS, Dinischiotu A, Popa M, Chifiriuc MC, Lazar V, Pircalabioru GG, Bezirtzoglou E, Iordache OG, Varzaru E, Dumitrescu I, Feder M, Vasiliu F, Mercioniu I, Diamandescu L. Innovative self-cleaning and biocompatible polyester textiles nano-decorated with Fe–N-doped titanium dioxide. Nanomaterials. 2016;6:214–20.

    Article  CAS  PubMed Central  Google Scholar 

  32. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  33. Deacon GB, Phillips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  34. Chalkidou E, Perdih F, Turel I, Kessissollou DP, Psomas G. Copper(II) complexes with antimicrobial drug flumequine: structure and biological evaluation. J Inorg Biochem. 2012;113:55–65.

    Article  CAS  PubMed  Google Scholar 

  35. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986.

    Google Scholar 

  36. Efthimiadou EK, Katsaros N, Karaliota A, Psomas G. Mononuclear copper(II) complexes with quinolones and nitrogen-donor heterocyclic ligands: synthesis, characterization, biological activity and interaction with DNA. Inorg Chim Acta. 2007;360:4093–102.

    Article  CAS  Google Scholar 

  37. Hosny WM. Dioxouranium (VI) mixed ligand complexes containing 8-hydroxyquinoline and some amino acids. Synth React Inorg Met Org Chem. 1998;28:1029–52.

    Article  CAS  Google Scholar 

  38. Abou Sekkina MM, El Helbawy SM. Vibrational spectra of some solid 8-hydroxyquinoline metal complexes in correlation with their coordination bond length and type of metal ion. Proc Indian Sci Acad. 1985;51A:959–64.

    Google Scholar 

  39. Lever ABP. Crystal field spectra. Inorganic electronic spectroscopy. 1st ed. Amsterdam: Elsevier; 1968.

    Google Scholar 

  40. Cotton FA, Wilkinson G, Murillo CA, Bochman M. Advanced inorganic chemistry. 6th ed. New York: Wiley; 2003.

    Google Scholar 

  41. Reiss A, Chifiriuc MC, Amzoiu E, Cioateră N, Dabuleanu I, Rotaru P. New metal(II) complexes with ceftazidime Schiff base. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6832-0.

  42. Rotaru P, Scorei R, Harabor A, Dumitru MD. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506:8–13.

    Article  CAS  Google Scholar 

  43. Tatucu M, Rotaru P, Rau I, Spinu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.

    Article  CAS  Google Scholar 

  44. Constantinescu C, Morintale E, Ion V, Moldovan A, Luculescu C, Dinescu M, Rotaru P. Thermal, morphological and optical investigations of Cu(DAB)2 thin films produced by matrix-assisted pulsed laser evaporation and laser-induced forward transfer for sensor development. Thin Solid Films. 2012;520:3904–9.

    Article  CAS  Google Scholar 

  45. Popescu M, Rotaru P, Bubulica MV, Kriza A. New complexes with 2-pyridyl ketone Schiff bases. Synthesis, structural analysis and thermal studies. J Therm Anal Calorim. 2015;120:641–52.

    Article  CAS  Google Scholar 

  46. Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta. 2010;498:81–91.

    Article  CAS  Google Scholar 

  47. Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu(II) 2,2′-dihydroxy azobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.

    Article  CAS  Google Scholar 

  48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–63.

    Article  CAS  Google Scholar 

  49. Chihaia V, Sutmann G, Lee CS, Suh SH. Divergence-free description for molecular rotation in cartesian coordinates: the axis-rotation formula and some of its applications to computational chemistry. Rev Roum Chim. 2007;52:795–808.

    CAS  Google Scholar 

  50. Skyrianou KC, Psycharis V, Raptopoulou CP, Kessissoglou DP, Psomas G. Nickel-quinolone interaction. Part 4—structure and biological evaluation of nickel (II)—enrofloxacin complexes compared to zinc (II) analogues. J Inorg Biochem. 2011;105:63–74.

    Article  CAS  PubMed  Google Scholar 

  51. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.

    Article  CAS  Google Scholar 

  52. Trouchon T, Lefebvre S. A review of enrofloxacin for veterinary use. Open J Vet Med. 2016;6:40–58.

    Article  CAS  Google Scholar 

  53. Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta. 1998;1400:29–43.

    Article  CAS  PubMed  Google Scholar 

  54. Tweedy BG. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology. 1964;55:910–4.

    Google Scholar 

  55. Soliman MH, Mohamed GG, Hindy AMM. Biological activity, spectral and thermal characterization of mixed ligand complexes of enrofloxacin and glycine: in vitro antibacterial and antifungal activity studies. Monatsh Chem. 2015;146:259–73.

    Article  CAS  Google Scholar 

  56. Silva PP, Guerra W, Silveira JN, Ferreira AM, Bortolotto T, et al. Two new ternary complexes of copper(II) with tetracycline or doxycyline and 1,10-phenanthroline and their potential as antitumoral: cytotoxicity and DNA cleavage. Inorg Chem. 2011;50:6414–24.

    Article  CAS  PubMed  Google Scholar 

  57. Pivetta T, Isaia F, Verani G, Cannas C, Serra L, Castellano C, Demartin F, Pilla F, Manca M, Pani A. Mixed-1,10-phenanthroline-Cu(II) complexes: synthesis, cytotoxic activity versus hematological and solid tumour cells and complex formation equilibria with glutathione. J Inorg Biochem. 2012;114:28–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rotaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss, A., Cioatera, N., Chifiriuc, M.C. et al. New biologically active mixed-ligand Co(II) and Ni(II) complexes of enrofloxacin. J Therm Anal Calorim 134, 527–541 (2018). https://doi.org/10.1007/s10973-018-6994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6994-4

Keywords

Navigation