Skip to main content
Log in

Combustion characteristics of typical model components in solid waste on a macro-TGA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion characteristics of nine typical model components (PE, PET, PVC, PS, cellulose, hemicellulose, lignin, pectin and starch) in municipal solid waste were experimentally investigated on a custom-designed macro-thermal gravimetric analyzer (macro-TGA) at three heating rates of 10, 20 and 30 °C min−1. The combustion characteristics of biomass components (cellulose, hemicellulose, lignin, pectin and starch) were a little more complex than those of plastics (PET, PET, PVC and PS), which indicated that combustion was related to not only proximate analyses results, but also the chemical structure and specific chemical reactions. With the increase in the heating rates, the decomposition of all samples except for lignin was delayed. The main peak temperature of 20 °C min−1 was 30–55 °C higher than that of 10 °C min−1 and 20–40 °C and lower than that of 30 °C min−1 on macro-TGA. Some adjacent peaks in the differential thermogravimetric curves moved closer to each other or overlapped together. The residues of biomass components rose evidently with the increase in the heating rate from 10 to 20 °C min−1, while the plastic components almost burned out during combustion. The kinetics analysis based on Flynn–Wall–Ozawa method was used to calculate the activation energies of the samples. The activation energies of biomass components on the macro-TGA were mostly below 50 kJ mol−1, whereas those of plastic components were mainly between 40 and 140 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muthuraman M, Namioka T, Yoshikawa K. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste. Bioresour Technol. 2010;101:2477–82.

    Article  CAS  Google Scholar 

  2. Liang L, Sun R, Fei J, Wu S, Liu X, Dai K, Yao N. Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Bioresour Technol. 2008;99:7238–46.

    Article  CAS  Google Scholar 

  3. Sharifah ASAK, Abidin HZ, Sulaiman MR, Khoo KH, Ali H. Combustion characteristics of Malaysian municipal solid waste and predictions of air flow in a rotary kiln incinerator. J Mater Cycles Waste. 2008;10:116–23.

    Article  CAS  Google Scholar 

  4. Conesa JA, Soler A. Decomposition kinetics of materials combining biomass and electronic waste. J Therm Anal Calorim. 2017;128:225–33.

    Article  CAS  Google Scholar 

  5. Plis A, Kotyczka-Morańska M, Kopczyński M, Łabojko G. Furniture wood waste as a potential renewable energy source. J Therm Anal Calorim. 2016;125:1357–71.

    Article  CAS  Google Scholar 

  6. Zhou H, Meng A, Long Y, Li Q, Zhang Y. Classification and comparison of municipal solid waste based on thermochemical characteristics. J Air Waste Manag. 2014;64:597–616.

    Article  CAS  Google Scholar 

  7. Sørum L, Grønli MG, Hustad JE. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel. 2001;80:1217–27.

    Article  Google Scholar 

  8. Wang S, Lin H, Ru B, Dai G, Wang X, Xiao G, Luo Z. Kinetic modeling of biomass components pyrolysis using a sequential and coupling method. Fuel. 2016;185:763–71.

    Article  CAS  Google Scholar 

  9. Sannigrahi P, Ragauskas AJ, Tuskan GA. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioprod Biorefin. 2010;4:209–26.

    Article  CAS  Google Scholar 

  10. Martín-Gullón I, Esperanza M, Font R. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). J Anal Appl Pyrol. 2001; 58–59:635–650.

  11. Shuiqing L, Yong C, Weiwu L, Rundong L, Kunzhan Q, Xiaodong L, Jianhua Y, Jiade M, Kefa C. Experimental and mechanism analyses on HCl emission control during PVC combustion in fixed beds. Chin J Environ Sci. 2001;22:95–100 (in Chinese).

    Google Scholar 

  12. Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy. 2007;32:649–61.

    Article  CAS  Google Scholar 

  13. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrol. 2014;107:323–31.

    Article  CAS  Google Scholar 

  14. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  15. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel. 2006;20:388–93.

    Article  CAS  Google Scholar 

  16. Aggarwal P, Dollimore D. The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis. Thermochim Acta. 1997;291:65–72.

    Article  CAS  Google Scholar 

  17. Panagiotou T, Levendis YA. Observations on the Combustion of Pulverized PVC and Poly(ethylene). Combust Sci Technol. 1996;112:117–40.

    Article  CAS  Google Scholar 

  18. Ramiah MV. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci. 1970;14:1323–37.

    Article  CAS  Google Scholar 

  19. Cho J, Chu S, Dauenhauer PJ, Huber GW. Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chem. 2012;14:428–39.

    Article  CAS  Google Scholar 

  20. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  22. Braun RL, Burnham AK. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuel. 1987;1:153–61.

    Article  CAS  Google Scholar 

  23. Chen T, Wu W, Wu J, Cai J, Wu J. Determination of the pseudocomponents and kinetic analysis of selected combustible solid wastes pyrolysis based on Weibull model. J Therm Anal Calorim. 2016;126:1899–909.

    Article  CAS  Google Scholar 

  24. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  25. Yuan X, Leng L, Xiao Z, Lai C, Jiang L, Wang H, Li H, Chen X, Zeng G. Pyrolysis and combustion kinetics of glycerol-in-diesel hybrid fuel using thermogravimetric analysis. Fuel. 2016;182:502–8.

    Article  CAS  Google Scholar 

  26. Zuzjaková Zeman P, Kos Š. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure. Thermochim Acta. 2013;572:85–93.

    Article  Google Scholar 

  27. Meng A, Chen S, Zhou H, Long Y, Zhang Y, Li Q. Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel. 2015;157:1–8.

    Article  CAS  Google Scholar 

  28. Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochim Acta. 2013;566:36–43.

    Article  CAS  Google Scholar 

  29. Long Y, Zhou H, Meng A, Li Q, Zhang Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean J Chem Eng. 2016;33:2638–43.

    Article  CAS  Google Scholar 

  30. Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q. Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manag. 2015;46:247–56.

    Article  CAS  Google Scholar 

  31. Varma AK, Mondal P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim. 2016;124:487–97.

    Article  CAS  Google Scholar 

  32. Burnham AK. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355:165–70.

    Article  CAS  Google Scholar 

  33. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  34. Su GQ, Yang J, Lu HB. Experimental study on combustion characteristics of three biomass components. Adv Mater Res. 2014;953–954:309–12.

    Google Scholar 

  35. Zhou S, Xu Y, Wang C, Tian Z, Xu Z, He Q. A comparative study of the combustion behavior and mechanism of cellulose, pectin and starch. Acta Tab Sin. 2011;17:1–9.

    CAS  Google Scholar 

  36. Unapumnuk K, Keener TC, Lu MM, Khang SJ. Pyrolysis behavior of tire-derived fuels at different temperatures and heating rates. J Air Waste Manag. 2006;56:618–27.

    Article  CAS  Google Scholar 

  37. Guerrero M, Ruiz MP, Alzueta MU, Bilbao R, Millera A. Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. J Anal Appl Pyrol. 2005;74:307–14.

    Article  CAS  Google Scholar 

  38. Rowe AA, Tajvidi M, Gardner DJ. Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). J Therm Anal Calorim. 2016;126:1371–86.

    Article  CAS  Google Scholar 

  39. Turns S. An introduction to combustion: concepts and applications. New York: McGraw-Hill; 2000.

    Google Scholar 

  40. Lu H, Dai H, Ma Y. Combustion characteristics and dynamic analysis of three biomass components. Trans Chin Soc Agric Eng. 2012;28:186–91 (in Chinese).

    Google Scholar 

  41. XF Guo XYHL. Combustion characteristics of PVC. J Fuel Chem Technol. 2000;28:67–70.

    Google Scholar 

  42. Antoniadis G, Paraskevopoulos KM, Vassiliou AA, Papageorgiou GZ, Bikiaris D, Chrissafis K. Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT). Thermochim Acta. 2011;521:161–9.

    Article  CAS  Google Scholar 

  43. Jamal Y, Kim M, Park H. Isothermal combustion kinetics of synthetic refuse plastic fuel (RPF) blends by thermogravimetric analysis. Appl Therm Eng. 2016;104:16–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Key R&D Program of China (Grant No. 2017YFB0603601) and National Natural Science Foundation of China (No. 91434119) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, Q., Meng, A. et al. Combustion characteristics of typical model components in solid waste on a macro-TGA. J Therm Anal Calorim 132, 553–562 (2018). https://doi.org/10.1007/s10973-017-6909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6909-9

Keywords

Navigation