Skip to main content
Log in

Scale-adaptive simulation of turbulent mixed convection of nanofluids in a vertical duct

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present paper focuses on the turbulent mixed convection of nanofluids through a vertical square duct. The prediction accuracy of scale-adaptive simulation (SAS) approach is investigated versus RANS-based models (k − ε and k − ω), in terms of Nusselt number and friction factor. A thermal-dependent model is considered to determine the effective thermal conductivity and effective dynamic viscosity of nanofluids. The present numerical simulations are performed for CuO–water and SiO2–water nanofluids and compared with various experimental data. Results indicate that the SAS approach can predict the unsteady flow and heat transfer of nanofluids more accurately than the k − ε and k − ω models. Moreover, it is found that the turbulent velocity fluctuations enhance in streamwise, spanwise and wall-normal directions with an increasing nanoparticle volume fraction, whilst this increment is higher in streamwise direction. Also, in the near-wall region the effect of the presence of nanoparticles on the turbulent velocity fluctuations is more considerable, which increases the turbulence content of the flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Duct width (m)

c P :

Specific heat (J kg−1 K−1)

d p :

Particle diameter (nm)

D h :

Hydraulic diameter (m)

f :

Peripherally averaged friction factor \(( = 2{{\Delta }}PD_{\text{h}} /(Lu^{2} ))\)

g :

Gravitational acceleration (= 9.80665 m s−2)

Gr :

Grashof number \(( = g\beta q'' D_{\text{h}}^{4} /(\lambda \nu^{2} ))\)

h :

Convective heat transfer coefficient (W m−2 K−1) \(( = q'' /(T_{\text{wall}} - T_{\text{bulk}} ))\)

i, j, k :

Coordinate index

k :

Turbulence kinetic energy (m2 s−2)

L :

Duct length (m)

MCP:

Mixed convection parameter \(( = Ra^{1/4} /(Re^{1/2} pr^{1/3} ))\)

Nu :

Nusselt number \(( = hD_{\text{h}} /{{\lambda }})\)

P :

Pressure (Pa)

Pr :

Prandtl number \(( = \nu /\alpha )\)

Q :

Second invariant of the velocity gradient tensor (s−2)

q″:

Uniform heat flux (W m−2)

Ra :

Rayleigh number (= Gr Pr)

RANS:

Reynolds-averaged Navier–Stokes

Re :

Reynolds number (\(= (uD_{\text{h}} /\nu )\))

S :

Strain rate tensor (s−1)

SAS:

Scale-adaptive simulation

t :

Time (s)

T :

Temperature (K)

URANS:

Unsteady Reynolds-averaged Navier–Stokes

u i :

Velocity vector (m s−1)

\(\bar{u}\) :

Mean velocity component (m s−1)

u′:

Fluctuating velocity component (m s−1)

u, v, w :

Velocity along x, y, z (m s−1)

u * :

Friction velocity (m s−1)

x, y, z :

Coordinate system

x + :

Dimensionless wall distance in x direction

z + :

Dimensionless wall distance in z direction

α :

Thermal diffusivity (m2s−1)

β :

Volumetric expansion coefficient (K−1)

\(\delta_{\text{ij}}\) :

Kronecker delta

\(\varepsilon\) :

Dissipation rate (m2s−3)

\(\kappa\) :

Boltzmann constant (= 1.3807 × 10 23 J K−1)

\(\lambda\) :

Thermal conductivity (\({\text{W m}}^{ - 1} {\text{K}}^{ - 1}\))

\(\mu\) :

Dynamic viscosity (\({\text{Nsm}}^{ - 2}\))

\(\mu_{\text{t }}\) :

Turbulent (eddy) viscosity (\({\text{Nsm}}^{ - 2}\))

\(\rho\) :

Density (kg m−3)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\varphi\) :

Particle volume fraction

\({{\Omega }}\) :

Rotation rate tensor (s−1)

\(\omega\) :

Specific dissipation rate (s−1)

b:

Bulk

bf:

Base fluid

nf:

Nanofluid

p:

Particle

rms:

Root mean square

w:

Water

References

  1. Faizal M, Saidur R, Mekhilef S, Alim M. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag. 2013;76:162–8.

    Article  CAS  Google Scholar 

  2. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh S. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

  3. Prasad P, Gupta A, Sundar LS, Singh MK, Sousa A. Heat transfer and friction factor of Al2O3 nanofluid flow in a double pipe U-tube heat exchanger and with longitudinal strip inserts: an experimental study. J Nanofluids. 2015;4(3):293–301.

    Article  Google Scholar 

  4. Choi SU. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, San Francisco, CA, USA; 1995.

  5. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass. 2006;33(4):529–35.

    Article  Google Scholar 

  6. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):119–23.

    Article  Google Scholar 

  7. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Exp Therm Fluid Sci. 2009;33(4):706–14.

    Article  CAS  Google Scholar 

  8. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1):334–44.

    Article  CAS  Google Scholar 

  9. Suresh S, Chandrasekar M, Sekhar SC. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Therm Fluid Sci. 2011;35(3):542–9.

    Article  CAS  Google Scholar 

  10. Mehrjou B, Heris SZ, Mohamadifard K. Experimental study of CuO/water nanofluid turbulent convective heat transfer in square cross-section duct. Exp Heat Transf. 2015;28(3):282–97.

    Article  CAS  Google Scholar 

  11. Ferrouillat S, Bontemps A, Ribeiro J-P, Gruss J-A, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow. 2011;32(2):424–39.

    Article  CAS  Google Scholar 

  12. Colla L, Fedele L, Manca O, Marinelli L, Nardini S. Experimental and numerical investigation on forced convection in circular tubes with nanofluids. Heat Transf Eng. 2016;37(13–14):1201–10.

    Article  CAS  Google Scholar 

  13. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  Google Scholar 

  14. Manca O, Nardini S, Ricci D. A numerical study of nanofluid forced convection in ribbed channels. Appl Therm Eng. 2012;37:280–92.

    Article  CAS  Google Scholar 

  15. Tohidi A, Ghaffari H, Nasibi H, Mujumdar A. Heat transfer enhancement by combination of chaotic advection and nanofluids flow in helically coiled tube. Appl Therm Eng. 2015;86:91–105.

    Article  CAS  Google Scholar 

  16. Mohantmadpour E, Eghdamtalab M. Effect of convective transport mechanisms on heat transfer characteristics of nanofluids. Sci Iran. 2016;23(6):2567–74.

    Google Scholar 

  17. Bahiraei M. A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler–Lagrange approach. J Therm Anal Calorim. 2016;123(2):1591–9.

    Article  CAS  Google Scholar 

  18. Bazdidi-Tehrani F, Sedaghatnejad M, Vasefi SI, Jolandan NE. Investigation of mixed convection and particle dispersion of nanofluids in a vertical duct. Proc Inst Mech Eng Pt C: J Mech Eng Sci. 2016;230(20):3691–705.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Article  Google Scholar 

  20. Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci. 2011;50(3):341–9.

    Article  CAS  Google Scholar 

  21. Bayat J, Nikseresht AH. Thermal performance and pressure drop analysis of nanofluids in turbulent forced convective flows. Int J Therm Sci. 2012;60:236–43.

    Article  CAS  Google Scholar 

  22. Kamyar A, Saidur R, Hasanuzzaman M. Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf. 2012;55(15):4104–15.

    Article  CAS  Google Scholar 

  23. Ghaffari O, Behzadmehr A, Ajam H. Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. Int Commun Heat Mass. 2010;37(10):1551–8.

    Article  CAS  Google Scholar 

  24. Hejazian M, Moraveji MK. A comparative analysis of single and two-phase models of turbulent convective heat transfer in a tube for TiO2 nanofluid with CFD. Numer Heat Transf A: Appl. 2013;63(10):795–806.

    Article  CAS  Google Scholar 

  25. Rostamani M, Hosseinizadeh S, Gorji M, Khodadadi J. Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. Int Commun Heat Mass. 2010;37(10):1426–31.

    Article  CAS  Google Scholar 

  26. Roy G, Gherasim I, Nadeau F, Poitras G, Nguyen CT. Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows. Int J Therm Sci. 2012;58:120–9.

    Article  CAS  Google Scholar 

  27. Menter F, Egorov Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul Combust. 2010;85(1):113–38.

    Article  Google Scholar 

  28. Bejan A. Convection heat transfer. 4th ed. Hoboken: Wiley; 2013.

    Book  Google Scholar 

  29. Hinze JO. Turbulence. 2nd ed. Ohio: McGraw-Hill; 1975.

    Google Scholar 

  30. Rotta JC. Turbulente Strömungen. 1st ed. Stuttgart: BG Teubner; 1972.

    Book  Google Scholar 

  31. Menter F, Egorov Y, editors. Revisiting the turbulent scale equation. IUTAM symposium on one hundred years of boundary layer research, August 12–14, Göttingen, Germany; 2004.

  32. Menter F, Egorov Y, editors. A scale adaptive simulation model using two-equation models. 43rd AIAA aerospace sciences meeting and exhibit, Reno, Nevada, USA; 2005.

  33. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  34. Nazififard M, Nematollahi M, Jafarpur K, Suh KY. Numerical simulation of water-based alumina nanofluid in subchannel geometry. Sci Technol Nucl Inst. 2012;2012:1–12.

    Google Scholar 

  35. Sundar LS, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35.

    Article  Google Scholar 

  36. Moraveji MK, Darabi M, Haddad SMH, Davarnejad R. Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. Int Commun Heat Mass. 2011;38(9):1291–5.

    Article  CAS  Google Scholar 

  37. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.

    Article  Google Scholar 

  38. Nguyen C, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.

    Article  CAS  Google Scholar 

  39. Patankar S. Numerical heat transfer and fluid flow. Abingdon: CRC Press, Taylor & Francis Group; 1980.

    Google Scholar 

  40. Kays WM, Crawford ME, Weigand B. Convective heat and mass transfer. 3rd ed. Ohio: McGraw-Hill Higher Education; 2005.

    Google Scholar 

  41. Hunt JC, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. In: Proceedings of the 1988 summer program, Stanford, CA, USA; 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Bazdidi-Tehrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazdidi-Tehrani, F., Vasefi, S.I. & Khabazipur, A. Scale-adaptive simulation of turbulent mixed convection of nanofluids in a vertical duct. J Therm Anal Calorim 131, 3011–3023 (2018). https://doi.org/10.1007/s10973-017-6747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6747-9

Keywords

Navigation