Skip to main content
Log in

Physical and chemical treatments influence on the thermal decomposition of a dolomite used as a foaming agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main goal of this research was to improve a carbonate-type foaming agent for the production of Al foams. Various systematic treatments, i.e. mechanical, thermal and chemical, were applied to naturally occurring dolomite, in order to affect its thermal decomposition. Structural modifications after the treatments as well as after the thermal decomposition were monitored by X-ray diffraction, while thermal gravimetry and differential scanning calorimetry coupled with mass spectrometry were employed to monitor the processes during the heating experiments. The as-received dolomite, without any pre-treatments, decomposes at a relatively high temperature, which prevents its wider application as a foaming agent. However, by using various treatments the decomposition of the dolomite could be shifted towards lower temperatures, making it suitable for the production of aluminium foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Powell EK, Searcy AW. Kinetics and thermodynamics of decomposition of dolomite to a metastable solid product. J Am Ceram Soc. 1978;61:216–21.

    Article  CAS  Google Scholar 

  2. Zucchini A, Prencipe M, Comodi P, Frondini F. Ab initio study of cation disorder in dolomite. CALPHAD. 2012;38:177–84.

    Article  CAS  Google Scholar 

  3. L’Vov BV, Ugolkov VL. Kinetics of free-surface decomposition of dolomite single crystals and powders analyzed thermogravimetrically by the third-law method. Thermochim Acta. 2003;401:139–47.

    Article  Google Scholar 

  4. Galai H, Pijolat M, Nahdi K, Trabelsi-Ayadi M. Mechanism of growth of MgO and CaCO3 during a dolomite partial decomposition. Solid State Ion. 2007;178:1039–47.

    Article  CAS  Google Scholar 

  5. Xu LL, Deng M. Dolomite used as raw material to produce MgO-based expansive agent. Cem Concr Res. 2005;35:1480–5.

    Article  Google Scholar 

  6. Kevorkijan V, Škapin SD, Paulin I, Šuštaršič B, Jenko M. Synthesis and characterisation of closed cells aluminium foams containing dolomite powder as foaming agent. Mater Tehnol. 2010;44:363–71.

    Google Scholar 

  7. Kevorkijan V, Škapin SD, Paulin I, Kovačec U, Jenko M. Effect of a foaming agent and its morphology on the foaming behaviour, cell-size distribution and microstructural uniformity of closed-cell aluminium foams. Mater Tehnol. 2012;46:233–8.

    CAS  Google Scholar 

  8. Banhart J. Manufacturing routes for metallic foams. JOM J Miner Met Mater Soc. 2000;52:22–7.

    Article  CAS  Google Scholar 

  9. Paulin I. Synthesis and characterization of Al foams produced by powder metallurgy route using dolomite and titanium hydride as a foaming agents. Mater Tehnol. 2014;48:943–7.

    Google Scholar 

  10. Paulin I, Šuštaršič B, Kevorkijan V, Škapin SD, Jenko M. Synthesis of aluminium foams by the powder-metallurgy process: compacting of precursors. Mater Tehnol. 2011;45:13–9.

    CAS  Google Scholar 

  11. Kevorkijan V, Škapin SD, Paulin I, Šuštaršič B, Jenko M, Lažeta M. Influence of the foaming precursor’s composition and density on the foaming efficiency, microstructure development and mechanical properties of aluminium foams. Mater Tehnol. 2011;45:95–103.

    CAS  Google Scholar 

  12. Ercenk E. The effect of clay on foaming and mechanical properties of glass foam insulating material. J Therm Anal Calorim. 2017;127:137–46.

    Article  CAS  Google Scholar 

  13. Papadopoulos DP, Omar H, Stergioudi F, Tsipas SA, Michailidis N. The use of dolomite as foaming agent and its effect on the microstructure of aluminium metal foams—comparison to titanium hydride. Colloids Surf A. 2011;382:118–23.

    Article  CAS  Google Scholar 

  14. Paulin I. Stability of close-cell Al foams depending on the usage of different foaming agents. Mater Tehnol. 2015;49:983–8.

    Article  Google Scholar 

  15. Kristof-Mako E, Juhasz AZ. The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite. Thermochim Acta. 1999;342:105–14.

    Article  CAS  Google Scholar 

  16. Ozao R, Ochiai M, Ogura H, Tsutsumi S. Thermoanalytical characterization of powder samples I. Wet pretreated samples. Thermochim acta. 1995;267:149–57.

    Article  CAS  Google Scholar 

  17. Wang K, Yin Z, Zhao P, Han D, Hu X, Zhang G. Effect of chemical and physical treatments on the properties of a dolomite used in Ca looping. Energy Fuels. 2015;29:4428–35.

    Article  CAS  Google Scholar 

  18. Niu S, Han K, Lu C, Sun R. Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate. Appl Energy. 2010;87:2237–42.

    Article  CAS  Google Scholar 

  19. Olszak-Humienik M, Jablonski M. Thermal behavior of natural dolomite. J Therm Anal Calorim. 2015;119:2239–48.

    Article  CAS  Google Scholar 

  20. Engler P, Santana MW, Mittleman M, Balazs D. Non isothermal, in situ XRD analysis of dolomite decomposition. Rigaku J. 1988;5:3–8.

    Google Scholar 

  21. The International Center for Diffraction Data. http://www.icdd.com/.

  22. Unluer C, Al-Tabbaa A. Characterization of light and heavy hydrated magnesium carbonates using thermal analysis. J Therm Anal Calorim. 2014;115:595–607.

    Article  CAS  Google Scholar 

  23. Grebowicz J. Understanding thermal properties of oil shales at high temperature toward application of nuclear energy in extraction of natural hydrocarbons. J Therm Anal Calorim. 2014;116:1481–90.

    Article  CAS  Google Scholar 

  24. Rodriguez-Navarro C, Kudlacz K, Ruiz-Agudo E. The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analysis. Am Mineral. 2012;97:38–51.

    Article  CAS  Google Scholar 

  25. Wang K, Hu X, Zhao P, Yin Z. Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture. Appl Energy. 2016;165:14–21.

    Article  CAS  Google Scholar 

  26. Kristof-Mako E, Juhasz AZ. The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite. Thermochim Acta. 1999;342:105–14.

    Article  CAS  Google Scholar 

  27. Line Broadening Analysis. https://chemistry.osu.edu/~woodward/size_str.pdf.

  28. Cater ED, Buseck PR. Mechanism of decomposition of dolomite, Ca0.5Mg0.5CO3, in the electron microscope. Ultramicroscopy. 1985;18:241–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Mandrino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandrino, D., Paulin, I., Kržmanc, M.M. et al. Physical and chemical treatments influence on the thermal decomposition of a dolomite used as a foaming agent. J Therm Anal Calorim 131, 1125–1134 (2018). https://doi.org/10.1007/s10973-017-6699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6699-0

Keywords

Navigation