Skip to main content
Log in

Thermal expansion, heat capacity and phase transformations in nanocrystalline and coarse-crystalline silver sulfide at 290–970 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependences of the thermal expansion coefficient and heat capacity of nanocrystalline and coarse-crystalline silver sulfide Ag2S have been studied using dilatometry and differential scanning calorimetry. When the temperature increases from 290 to 970 K, the phase transformations “acanthite α-Ag2S ⇔ argentite β-Ag2S” and “argentite β-Ag2S ⇔ γ-Ag2S phase” occur sequentially in the silver sulfide. The thermal expansion coefficient α and heat capacity C p of α-Ag2S, β-Ag2S and γ-Ag2S phases in nanocrystalline state (with particle size ≤60–70 nm) in the temperature regions of existence of these phases are larger than α and C p of the same phases in coarse-crystalline state (with particle size ≥400 nm). It is shown that the heat capacity and the thermal expansion coefficient of nanocrystalline silver sulfide Ag2S contain an additional positive contribution due to the restriction of the phonon spectrum on the side of low and high frequencies caused by a small particle size. It is established that the acanthite α-Ag2S to argentite β-Ag2S and argentite β-Ag2S to γ-Ag2S phase transformations are the first-order phase transitions, and the temperatures and enthalpies of these transformations have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. El-Nahass MM, Farag AAM, Ibrahim EM, Abd-El-Rahman S. Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum. 2004;72:453–60.

    Article  CAS  Google Scholar 

  2. Prabhune VB, Shinde NS, Fulari VJ. Studies on electrodeposited silver sulphide thin films by double exposure holographic interferometry. Appl Surf Sci. 2008;255:1819–23.

    Article  CAS  Google Scholar 

  3. Jadhav UM, Patel SN, Patil RS. Synthesis of silver sulphide nanoparticles by modified chemical route for solar cell applications. Res J Chem Sci. 2013;3:69–74.

    CAS  Google Scholar 

  4. Krylova V, Milbrat A, Embrechts A, Baltrusaitis J. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption. Appl Surf Sci. 2014;301:134–41.

    Article  CAS  Google Scholar 

  5. Karashanova D, Nihtianova D, Starbova K, Starbov N. Crystalline structure and phase composition of epitaxially grown Ag2S thin films. Solid State Ionics. 2004;171:269–75.

    Article  CAS  Google Scholar 

  6. Zamiri R, Ahangar HA, Zakaria A, Zamiri G, Shabani M, Singh B, Ferreira JMF. The structural and optical constants of Ag2S semiconductor nanostructure in the far-Infrared. Chem Centr J. 2015;9:28.

    Article  Google Scholar 

  7. Gusev AI. Effects of the nanocrystalline state in solids. Usp Fiz Nauk. 1998; 168:55–83. (in Russian). (Engl. transl.: Phys Uspekhi. 1998; 41:49–76).

  8. Sharma RS, Chang YA. The Ag-S (silver-sulfur) system. Bull Alloy Phase Diagr. 1986;7:263–9.

    Article  CAS  Google Scholar 

  9. Sadanaga R, Sueno S. X-ray study on the α-β transition of Ag2S. Mineralog J Jpn. 1967;5:124–48.

    Article  CAS  Google Scholar 

  10. Sadovnikov SI, Gusev AI, Rempel AA. Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders. Superlattices Microstruct. 2015;83:35–47.

    Article  CAS  Google Scholar 

  11. Sadovnikov SI, Gusev AI, Rempel AA. Nonstoichiometry of nanocrystalline monoclinic silver sulfide. Phys Chem Chem Phys. 2015;17:12466–71.

    Article  CAS  Google Scholar 

  12. Blanton T, Misture S, Dontula N, Zdzieszynski S. In situ high-temperature X-ray diffraction characterization of silver sulfide, Ag2S. Powder Diffr. 2011;26:110–8.

    Google Scholar 

  13. Sadovnikov SI, Gusev AI, Rempel AA. An in situ high-temperature scanning electron microscopy study of acanthite–argentite phase transformation in nanocrystalline silver sulfide powder. Phys Chem Chem Phys. 2015;17:20495–501.

    Article  CAS  Google Scholar 

  14. Sadovnikov SI, Gusev AI, Chukin AV, Rempel AA. High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S. Phys Chem Chem Phys. 2016;18:4617–26.

    Article  CAS  Google Scholar 

  15. Perrott CM, Fletcher NH. Heat capacity of silver sulfide. J Chem Phys. 1969;50:2344–50.

    Article  CAS  Google Scholar 

  16. Grønvold F, Westrum EF. Silver(I) sulfide: Ag2S. Heat capacity from 5 to, 1000 K, thermodynamic properties, and transitions. J Chem Thermodyn. 1986;18:381–401.

    Article  Google Scholar 

  17. Thompson WT, Flengas SN. Drop calorimetric measurements on some chlorides, sulfides, and binary melts. Can J Chem. 1971;49:1550–63.

    Article  CAS  Google Scholar 

  18. Mamedov KP, Gadzhiev MF, Suleimanov ZJ, Nurieva ZD. X-ray and thermographic study of phase transition α → β in Ag2S. Russ J Inorg Mater. 1980;16:241–3.

    Google Scholar 

  19. Sadovnikov SI, Chukin AV, Rempel AA, Gusev AI. Polymorphic transformation in nanocrystalline silver sulfide. Fiz tverd Tela. 2016; 58:32–38. (in Russian). (Engl. transl.: Phys Solid State. 2016; 58:30–36).

  20. Gusev AI, Sadovnikov SI, Chukin AV, Rempel AA. Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Fiz tverd Tela. 2016; 58:246–251. (in Russian). (Engl. transl.: Phys Solid State. 2016; 58:251–257.).

  21. Okazaki H, Takano A. The specific heat of Ag2S in α-phase. Ztsch Naturforsch A. 1985;40:986–8.

    Google Scholar 

  22. Honma K, Iida K. Specific heat of superionic conductor Ag2S, Ag2Se and Ag2Te in α-phase. J Phys Soc Jpn. 1987;56:1828–36.

    Article  CAS  Google Scholar 

  23. Behera M, Raju S, Mythili R, Saroja S. Study of kinetics of α ↔ β phase transformation in Ti–4.4 mass% Ta–1.9 mass% Nb alloy using differential scanning calorimetry. J Therm Anal Calorim. 2016;124:1217–28.

    Article  CAS  Google Scholar 

  24. Naz S, Durrani SK, Mehmood M, Nadeem M, Khan AA. Study of thermal, structural and impedance characteristics of nanocrystalline copper chromite synthesized via hydrothermal process. J Therm Anal Calorim. 2016;126:381–9.

    Article  CAS  Google Scholar 

  25. Sadovnikov SI, Rempel AA. Synthesis of nanocrystalline silver sulfide. Neorgan Materialy. 2015; 51:829–837. (in Russian). (Engl. transl.: Inorg Mater. 2015; 51:759–766).

  26. Sadovnikov SI, Gusev AI. Universal approach to the synthesis of silver sulfide in the forms of nanopowders, quantum dots, core-shell nanoparticles, and heteronanostructures. Eur J Inorg Chem. 2016;2016:4944–57.

    Article  CAS  Google Scholar 

  27. Kozhevnikova NS, Sadovnikov SI, Rempel AA. One-pot synthesis of lead sulfide nanoparticles. Russ J Gen Chem. 2011;81:2062–6.

    Article  CAS  Google Scholar 

  28. X’Pert HighScore Plus. Version 2.2e (2.2.5). © 2009 PANalytical B. V. Almedo, the Netherlands.

  29. Sadovnikov SI, Kozhevnikova NS, Pushin VG, Rempel AA. Microstructure of nanocrystalline PbS powders and films. Neorgan Materialy. 2012; 48:26–33 (in Russian). (Engl. transl.: Inorg Mater. 2012; 48:21–27).

  30. Sadovnikov SI, Kozhevnikova NS. Microstructure and crystal structure of nanocrystalline powders and films. Fiz tverd Tela. 2012; 54:1459–1465. (in Russian). (Engl. transl.: Phys Solid State. 2012; 54:1554–1561).

  31. Gusev AI, Rempel AA. Nanocrystalline materials. Cambridge: Cambridge Intern. Science Publ; 2004. p. 351.

    Google Scholar 

  32. Sadovnikov SI, Gusev AI. Chemical deposition of nanocrystalline lead sulfide powders with controllable particle size. J Alloys Compd. 2014;586:105–12.

    Article  CAS  Google Scholar 

  33. Linstrom PJ, Mallard WG, editors. NIST chemistry webbook, NIST standard reference database number 69. Gaithersburg: The National Institute of Standards and Technology; 2005.

  34. http://webbook.nist.gov/chemistry/.

  35. Goll G, Löhneyen H. Specific heat of nanocrystalline and colloidal noble metals at low temperatures. Nanostruct Mater. 1995;6:559–62.

    Article  Google Scholar 

  36. Chen YY, Yao YD, Lin BT, Suo CT, Shyu SG, Lin HM. Specific heat of fine copper particles. Nanostruct Mater. 1995;6:597–600.

    Article  Google Scholar 

  37. Sadovnikov SI, Gusev AI. Effect of particle size on the thermal expansion of nanostructured lead sulfide films. J Alloys Compd. 2014;610:196–202.

    Article  CAS  Google Scholar 

  38. Sadovnikov SI, Gusev AI, Rempel AA. Nanostructured lead sulfide: synthesis, structure, and properties. Russ Chem Rev. 2016;85:731–58.

    Article  CAS  Google Scholar 

  39. Sadovnikov SI, Gusev AI. Recent progress in nanostructured silver sulfide Ag2S: from synthesis and nonstoichiometry to properties. J Mater Chem A. 2017;. doi:10.1039/c7ta04949h.

    Google Scholar 

  40. Petrov YuI. Physics of small particles. Moscow: Nauka; 1982. p. 360 (in Russian).

    Google Scholar 

  41. Sadovnikov SI, Gusev AI. Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations. Fiz tverd Tela. 2014; 56:2274–2278. (in Russian). (Engl. transl.: Phys Solid State. 2014; 56:2353–2358).

  42. Montrol EW. Size effect in low temperature heat capacities. J Chem Phys. 1950;18:183–5.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Russian Science Foundation (Grant 14-23-00025) through the Institute of Solid State Chemistry of the Ural Branch of the RAS. Authors are grateful to Dr. O. N. Leonidova and D. A. Yagodin for the assistance in dilatometric and calorimetric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I., Gusev, A.I. Thermal expansion, heat capacity and phase transformations in nanocrystalline and coarse-crystalline silver sulfide at 290–970 K. J Therm Anal Calorim 131, 1155–1164 (2018). https://doi.org/10.1007/s10973-017-6691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6691-8

Keywords

Navigation