Skip to main content
Log in

Comparison of the thermal behavior and conformational changes in partially and fully hydrated dipalmitoylphosphatidylcholine systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependence of conformational changes for partially and fully hydrated DPPC systems through two physicochemical techniques, namely DSC and Raman spectroscopy, is studied. DSC experiments have shown a different thermal behavior between the two considered systems, indicating the effective role of water in the thermal behavior. A temperature resolution of inter- and intramolecular interactions during the main melting phase transition was achieved by using three different Raman intensity ratios, which confirm that the main phase transition represents a two-stage transition. Van’t Hoff plots for the C–C, C–H, C=O and C4N+ stretching modes, in a temperature range just below the main transition temperature, have been used to compare the thermodynamic parameters extracted by the two physicochemical techniques. The significance of these results can be summarized as follows: (a) DSC and Raman spectroscopy have shown complementary results indicating that DPPC exists in partially or fully hydrated states; (b) thermodynamic parameters ΔΗ and ΔS calculated in both techniques for the two different hydration states of DPPC were in harmony; (c) water more significantly affects the thermal and dynamic properties of fully hydrated DPPC bilayers than of the partially hydrated DPPC; and (d) water disturbs the head-group packing, the alkyl chains interactions and the mesophase region. It appears that the amount of water plays a vital role in the bilayer structure. As more and more extensive studies appear in the literature on biomolecules or drug membrane interactions, this information will be valuable in understanding the role of water in these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta Rev Biomembr. 1998;1376:91–145.

    Article  CAS  Google Scholar 

  2. Koynova R, Caffrey M. An index of lipid phase diagrams. Chem Phys Lipids. 2002;115:107–219.

    Article  CAS  Google Scholar 

  3. Chapman D. Phase transitions and fluidity characteristics of lipids and cell membranes. Q Rev Biophys. 1975;8:185–235.

    Article  CAS  Google Scholar 

  4. Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta Netherlands. 1978;515:367–94.

    Article  CAS  Google Scholar 

  5. Israelachvili JN, Marčelja S, Horn RG. Physical principles of membrane organization. Q Rev Biophys. 1980;13:121–200.

    Article  CAS  Google Scholar 

  6. O’Leary TJC, Levin IW. Effects of solvent on biomembrane structure: Raman spectroscopic investigation of dipalmitoylphosphatidylcholine dispersed in N-ethylammonium nitrate. J Phys Chem. 1984;88:4074–8.

    Article  Google Scholar 

  7. Agelis G, Resvani A, Ntountaniotis D, Chatzigeorgiou P, Koukoulitsa C, Androutsou ME, Plotas P, Matsoukas J, Mavromoustakos T, Čendak T, Ukmar Codec T, Mali G. Interactions of the potent synthetic AT1 antagonist analog BV6 with membrane bilayers and mesoporous silicate matrices. Biochim Biophys Acta Biomembr. 2013;1828:1846–55.

    Article  CAS  Google Scholar 

  8. Zhernenkov M, Bolmatov D, Soloviov D, Zhernenkov K, Toperverg BP, Cunsolo A, Bosak A, Cai YQ. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. Nat Commun. 2016;7:11575.

    Article  CAS  Google Scholar 

  9. Le Bihan T, Pézolet M. Study of the structure and phase behavior of dipalmitoylphosphatidylcholine by infrared spectroscopy: characterization of the pretransition and subtransition. Chem Phys Lipids. 1998;94:13–33.

    Article  Google Scholar 

  10. Mason JT. Investigation of phase transitions in bilayer membranes. Methods Enzymol. 1998;295:468–94.

    Article  CAS  Google Scholar 

  11. Meyer HW, Semmler K, Rettig W, Pohle W, Ulrich AS, Grage S, Selle C, Quinn PJ. Hydration of DMPC and DPPC at 4 °C produces a novel subgel phase with convex–concave bilayer curvatures. Chem Phys Lipids. 2000;105:149–66.

    Article  CAS  Google Scholar 

  12. Tenchov B, Koynova R, Rapp G. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Biophys J. 2001;80:1873–90.

    Article  CAS  Google Scholar 

  13. Kranenburg M, Smit B. Phase behavior of model lipid bilayers. J Phys Chem B. 2005;109:6553–63.

    Article  CAS  Google Scholar 

  14. Mouritsen OG. Life—as a matter of fat: the emerging science of lipidomics. New York: Springer; 2005.

    Google Scholar 

  15. Fox CB, Uibel RH, Harris JM. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution. J Phys Chem B. 2007;111:11428–36.

    Article  CAS  Google Scholar 

  16. Kučerka N, Tristram-Nagle S, Nagle JF. Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys J Biophys Soc. 2006;90:L83–5.

    Article  Google Scholar 

  17. Grillo D, Olvera de la Cruz M, Szleifer I. Theoretical studies of the phase behavior of DPPC bilayers in the presence of macroions. Soft Matter. 2011;7:4672–9.

    Article  CAS  Google Scholar 

  18. Prates Ramalho JP, Gkeka P, Sarkisov L. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations. Langmuir. 2011;27:3723–30.

    Article  CAS  Google Scholar 

  19. Curtis EM, Hall CK. Molecular dynamics simulations of DPPC bilayers using “LIME”, a new coarse-grained model. J Phys Chem B. 2013;117:5019–30.

    Article  CAS  Google Scholar 

  20. Meulendijks GHWM, De Haan JW, Vos AHJA, de Ven LJM, Buck HM. Carbon-13 cross-polarization magic-angle-spinning NMR study on the chain packing in anhydrous and hydrated DL- and L-dipalmitoylphosphatidylcholine. J Phys Chem. 1989;93:3806–9.

    Article  CAS  Google Scholar 

  21. Sakurai I, Sakurai S, Sakurai T, Seto T, Ikegami A, Iwayanagi S. Electron diffraction study on single crystals of l-type and dl-type lecithins. Chem Phys Lipids. 1980;26:41–8.

    Article  CAS  Google Scholar 

  22. Bush SF, Adams RG, Levin IW. Structural reorganizations in lipid bilayer systems: effect of hydration and sterol addition on Raman spectra of dipalmitoylphosphatidylcholine multilayers. Biochemistry. 1980;19:4429–36.

    Article  CAS  Google Scholar 

  23. Kint S, Wermer PH, Scherer JR. Raman spectra of hydrated phospholipid bilayers. 2. Water and head-group interactions. J Phys Chem. 1992;96:446–52.

    Article  CAS  Google Scholar 

  24. Bicknell-Brown E, Brown KG, Person WB. Configuration-dependent Raman bands of phospholipid surfaces: 2—Head group and acyl stretching modes in the 800–900 cm−1 region. J Raman Spectrosc. 1981;11:356–62.

    Article  CAS  Google Scholar 

  25. Hwang SB, Shen TY. Membrane effects of antiinflammatory agents. 2. Interaction of nonsteroidal antiinflammatory drugs with liposome and purple membranes. J Med Chem. 1981;24:1202–11.

    Article  CAS  Google Scholar 

  26. Mavromoustakos T, Daliani I. Effects of cannabinoids in membrane bilayers containing cholesterol. Biochim Biophys Acta Biomembr. 1999;1420:252–65.

    Article  CAS  Google Scholar 

  27. Lygre H, Moe G, Holmsen H. Interaction of ibuprofen with eukaryotic membrane lipids. Acta Odontol Scand. 2003;61:303–9.

    Article  CAS  Google Scholar 

  28. Kyrikou I, Hadjikakou SK, Kovala-Demertzi D, Viras K, Mavromoustakos T. Effects of non-steroid anti-inflammatory drugs in membrane bilayers. Chem Phys Lipids. 2004;132:157–69.

    Article  CAS  Google Scholar 

  29. Kyrikou I, Daliani I, Mavromoustakos T, Maswadeh H, Demetzos C, Hatziantoniou S, Giatrellis S, Nounesis G. The modulation of thermal properties of vinblastine by cholesterol in membrane bilayers. Biochim Biophys Acta Biomembr. 2004;1661:1–8.

    Article  CAS  Google Scholar 

  30. Procházka M, Štěpánek J, Turpin P-Y. Interaction of phospholipid dispersions with water-soluble porphyrins as monitored by their Raman temperature profiles. Chem Phys Lipids. 2004;132:145–56.

    Article  Google Scholar 

  31. Bardonnet PL, Faivre V, Pirot F, Boullanger P, Falson F. Cholesteryl oligoethyleneglycol glycosides: fluidizing effect of their embedment into phospholipid bilayers. Biochem Biophys Res Commun. 2005;329:1186–92.

    Article  CAS  Google Scholar 

  32. Severcan F, Sahin I, Kazanci N. Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim Biophys Acta Biomembr. 2005;1668:215–22.

    Article  CAS  Google Scholar 

  33. Koukoulitsa C, Kyrikou I, Demetzos C, Mavromoustakos T. The role of the anticancer drug vinorelbine in lipid bilayers using differential scanning calorimetry and molecular modeling. Chem Phys Lipids. 2006;144:85–95.

    Article  CAS  Google Scholar 

  34. Kyrikou I, Benetis NP, Chatzigeorgiou P, Zervou M, Viras K, Poulos C, Mavromoustakos T. Interactions of the dipeptide paralysin β-Ala-Tyr and the aminoacid Glu with phospholipid bilayers. Biochim Biophys Acta Biomembr. 2008;1778:113–24.

    Article  CAS  Google Scholar 

  35. Ntountaniotis D, Kellici T, Tzakos A, Kolokotroni P, Tselios T, Becker-Baldus J, Glaubitz C, Lin S, Makriyannis A, Mavromoustakos T. The application of solid-state NMR spectroscopy to study candesartan cilexetil (TCV-116) membrane interactions. Comparative study with the AT1R antagonist drug olmesartan. Biochim Biophys Acta Biomembr. 2014;1838:2439–50.

    Article  CAS  Google Scholar 

  36. Fotakis C, Megariotis G, Christodouleas D, Kritsi E, Zoumpoulakis P, Ntountaniotis D, Zervou M, Potamitis C, Hodzic A, Pabst G, Rappolt M, Mali G, Baldus J, Glaubitz C, Papadopoulos MG, Afantitis A, Melagraki G, Mavromoustakos T. Comparative study of the AT1 receptor prodrug antagonist candesartan cilexetil with other sartans on the interactions with membrane bilayers. Biochim Biophys Acta Biomembr. 2012;1818:3107–20.

    Article  CAS  Google Scholar 

  37. Di Foggia M, Bonora S, Tinti ATV. DSC and Raman study of DMPC liposomes in presence of Ibuprofen at different pH. J Therm Anal Calorim. 2017;127:1407–17.

    Article  Google Scholar 

  38. Rakic V, Ota A, Sokolovic D, Ulrih NP. Interactions of cyanidin and cyanidin 3-O-β-glucopyranoside with model lipid membranes. J Therm Anal Calorim. 2017;127:1467–77.

    Article  CAS  Google Scholar 

  39. Kodama M, Kuwabara M, Seki S. Successive phase-transition phenomena and phase diagram of the phosphatidylcholine-water system as revealed by differential scanning calorimetry. BBA Biomembr. 1982;689:567–70.

    Article  CAS  Google Scholar 

  40. Yeagle P. The structure of biological membranes. 2nd ed. Boca Raton: CRC Press; 2004.

    Google Scholar 

  41. Rappolt M, Rapp G. Structure of the stable and metastable ripple phase of dipalmitoylphosphatidylcholine. Eur Biophys J. 1996;24:381–6.

    Article  CAS  Google Scholar 

  42. Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle JF. Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;61:5668–77.

    CAS  Google Scholar 

  43. Pabst G, Amenitsch H, Kharakoz DP, Laggner P, Rappolt M. Structure and fluctuations of phosphatidylcholines in the vicinity of the main phase transition. Phys Rev E Stat Nonlinear: Soft Matter Phys; 2004. p. 70.

    Google Scholar 

  44. Mason PC, Nagle JF, Epand RM, Katsaras J. Anomalous swelling in phospholipid bilayers is not coupled to the formation of a ripple phase. Phys Rev E. 2001;63:30902.

    Article  CAS  Google Scholar 

  45. Pabst G, Katsaras J, Raghunathan VA, Rappolt M. Structure and interactions in the anomalous swelling regime of phospholipid bilayers. Langmuir. 2003;19:1716–22.

    Article  CAS  Google Scholar 

  46. Jørgensen K. Calorimetric detection of a sub-main transition in long-chain phosphatidylcholine lipid bilayers. BBA Biomembr. 1995;1240:111–4.

    Article  Google Scholar 

  47. Wunderlich B. Transitions in one-component systems. Thermal analysis. Boston: Academic Press; 1990. p. 104.

    Google Scholar 

  48. Prenner E, Chiu M. Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci. 2011;3:39.

    Article  Google Scholar 

  49. Blume A, Huebner W, Messner G. Fourier transform infrared spectroscopy of 13C: O labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988;27:8239–49.

    Article  CAS  Google Scholar 

  50. Zerbi G, Magni R, Gussoni M, Moritz KH, Bigotto A, Dirlikov S. Molecular mechanics for phase transition and melting of n-alkanes: a spectroscopic study of molecular mobility of solid n-nonadecane. J Chem Phys. 1981;75:3175–94.

    Article  CAS  Google Scholar 

  51. Maroncelli M, Qi S. Nonplanar conformers and the phase behavior of solid n-alkanes. J Am Chem Soc. 1982;157:6237–47.

    Article  Google Scholar 

  52. Bicknell-Brown E, Brown KG. Raman temperature study of conformational changes in anhydrous dipalmitoylphosphatidylcholine. Biochim Biophys Acta Biomembr. 1984;778:317–23.

    Article  CAS  Google Scholar 

  53. O’Leary TJ, Ross PD, Levin IW. Effects of anesthetic and nonanesthetic steroids on dipalmitoylphosphatidylcholine liposomes: a calorimetric and Raman spectroscopic investigation. Biochemistry. 1984;23:4636–41.

    Article  Google Scholar 

  54. Maissara M, Devaure J. Raman study of odd-numbered C11–C23 n-alkanes in their high-temperature solid phases. J Raman Spectrosc. 1987;18:181–4.

    Article  CAS  Google Scholar 

  55. Omura Y, Muraishi S. Spectral distortion and sample heating in 1064 nm FT-Raman spectra of aqueous dispersions of dipalmitoylphosphatidylcholine. Spectrochim Acta Part A Mol Biomol Spectrosc. 1997;53:1783–94.

    Article  Google Scholar 

  56. Lüttschwager NOB, Suhm MA. Stretching and folding of 2-nanometer hydrocarbon rods. Soft Matter. 2014;10:4885–901.

    Article  Google Scholar 

  57. McIntosh TJ. Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J. 1980;29:237–45.

    Article  CAS  Google Scholar 

  58. Rand RP, Chapman D, Larsson K. Tilted hydrocarbon chains of dipalmitoyl lecithin become perpendicular to the bilayer before melting. Biophys J U S. 1975;15:1117–24.

    Article  CAS  Google Scholar 

  59. Susi H, Byler DM, Damert WC. Raman intensities of carbon–carbon stretching modes in a model membrane. Chem Phys Lipids. 1980;27:337–44.

    Article  CAS  Google Scholar 

  60. Litman BJ, Lewis EN, Levin IW. Packing characteristics of highly unsaturated bilayer lipids: Raman spectroscopic studies of multilamellar phosphatidylcholine dispersions. Biochemistry. 1991;30:313–9.

    Article  CAS  Google Scholar 

  61. Csiszár A, Koglin E, Meier RJ, Klumpp E. The phase transition behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membrane influenced by 2,4-dichlorophenol—an FT-Raman spectroscopy study. Chem Phys Lipids. 2006;139:115–24.

    Article  Google Scholar 

  62. Orendorff CJ, Ducey MW, Pemberton JE. Quantitative correlation of raman spectral indicators in determining conformational order in alkyl chains. J Phys Chem A. 2002;106:6991–8.

    Article  CAS  Google Scholar 

  63. Fox CB, Horton RA, Harris JM. Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy. Anal Chem. 2006;78:4918–24.

    Article  CAS  Google Scholar 

  64. Zheng M, Du W. Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: a Raman spectroscopy study. Vib Spectrosc. 2006;40:219–24.

    Article  CAS  Google Scholar 

  65. Bunow MR, Levin IW. Comment on the carbon–hydrogen stretching region of vibrational Raman spectra of phospholipids. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1977;487:388–94.

    Article  CAS  Google Scholar 

  66. Vincent JS, Levin IW. Interaction of ferricytochrome c with zwitterionic phospholipid bilayers: a Raman spectroscopic study. Biochemistry. 1988;27:3438–46.

    Article  CAS  Google Scholar 

  67. Mavromoustakos T, Yang DP, Charalambous A, Herbette LG, Makriyannis A. Study of the topography of cannabinoids in model membranes using X-ray diffraction. BBA Biomembr. 1990;1024:336–44.

    Article  CAS  Google Scholar 

  68. Yang DP, Mavromoustakos T, Beshah K, Makriyannis A. Amphipathic interactions of cannabinoids with membranes. A comparison between delta 8-THC and its O-methyl analog using differential scanning calorimetry, X-ray diffraction and solid state 2H-NMR. Biochim Biophys Acta. 1992;1103:25–36.

    Article  CAS  Google Scholar 

  69. Mavromoustakos T, Theodoropoulou E, Yang D-P. The use of high-resolution solid-state NMR spectroscopy and differential scanning calorimetry to study interactions of anaesthetic steroids with membrane. Biochim Biophys Acta Biomembr. 1997;1328:65–73.

    Article  CAS  Google Scholar 

  70. Mavromoustakos T, Papahatjis D, Laggner P. Differential membrane fluidization by active and inactive cannabinoid analogues. Biochim Biophys Acta Biomembr. 2001;1512:183–90.

    Article  CAS  Google Scholar 

  71. Maswadeh H, Demetzos C, Daliani I, Kyrikou I, Mavromoustakos T, Tsortos A, Nounesis G. A molecular basis explanation of the dynamic and thermal effects of vinblastine sulfate upon dipalmitoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta. 2002;567:49–55.

    Article  Google Scholar 

  72. Fotakis C, Gega S, Siapi E, Potamitis C, Viras K, Moutevelis-Minakakis P, Kokotos CG, Durdagi S, Grdadolnik SG, Sartori B, Rappolt M, Mavromoustakos T. Interactions at the bilayer interface and receptor site induced by the novel synthetic pyrrolidinone analog MMK3. Biochim Biophys Acta Biomembr. 2010;1798:422–32.

    Article  CAS  Google Scholar 

  73. Potamitis C, Chatzigeorgiou P, Siapi E, Viras K, Mavromoustakos T, Hodzic A, Pabst G, Cacho-Nerin F, Laggner P, Rappolt M. Interactions of the AT1 antagonist valsartan with dipalmitoyl-phosphatidylcholine bilayers. Biochim. Biophys. Acta Biomembr. 2011;1808:1753–63.

    Article  CAS  Google Scholar 

  74. Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, Glaubitz C, Tzakos AG, Viras K, Chatzigeorgiou P, Tzimas S, Kefala E, Valsami G, Archontaki H, Papadopoulos MG, Mavromoustakos T. Investigation of the interactions of silibinin with 2-hydroxypropyl-beta-cyclodextrin through biophysical techniques and computational methods. Mol Pharm. 2015;12:954–65.

    Article  CAS  Google Scholar 

  75. Sadeghpour A, Rappolt M, Ntountaniotis D, Chatzigeorgiou P, Viras K, Megariotis G, Papadopoulos MG, Siapi E, Mali G, Mavromoustakos T. Comparative study of interactions of aliskiren and AT1 receptor antagonists with lipid bilayers. Biochim Biophys Acta. 2015;1848:984–94.

    Article  CAS  Google Scholar 

Download references

Aknowledgements

This research was co-financed by the European Union (European Social Fund—ESF) and Greek National funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund. The authors would like to acknowledge Ms. Shiri Arnon from UC Santa Barbara for proofreading the manuscript (Grant No. HTYSBIOP 021215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis E. Semidalas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzigeorgiou, P., Mourelatou, A., Pollatos, E. et al. Comparison of the thermal behavior and conformational changes in partially and fully hydrated dipalmitoylphosphatidylcholine systems. J Therm Anal Calorim 131, 887–898 (2018). https://doi.org/10.1007/s10973-017-6622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6622-8

Keywords

Navigation