Skip to main content
Log in

Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nine nucleating agents, calcium pimelate (CaPi), bicyclic [1, 2, 2]heptane di-carboxylate (HPN-68), a commercially obtained aryl amide nucleating agent (TMB-5), calcium salt of hexahydrophthalic acid (HPN-20E), 1,3:2,4-di-p-methylbenzylidene sorbitol (MDBS) and sodium, potassium, magnesium and calcium salt of benzene-1, 3, 5-tricarboxylic acid (Na3BTC, K3BTC, Mg3BTC2 and Ca3BTC2, respectively), were applied to reduce the supercooling of erythritol, and their effects were investigated by cyclic differential scanning calorimetry (DSC). The results revealed that Na3BTC and K3BTC could not induce erythritol to crystallize under the experiment condition. MDBS could only make erythritol to crystallize at a temperature slightly higher than that of pure erythritol, and the effect was unstable. Mg3BTC2, Ca3BTC2 and HPN-68 could induce erythritol to crystallize at relatively high temperature, but the peak temperature of crystallizing (T p, cr) and the phase change enthalpy of crystallizing (Δcr H) decreased greatly as the melting–crystallizing cycles increased. HPN-20E-doped erythritol crystallized at a high temperature with the T p, cr of 69.3 °C at the first cycle, but the T p, cr and Δcr H varied greatly during the melting–crystallizing cycles. CaPi and TMB-5 could induce erythritol to crystallize at a stable temperature with the T p, cr of about 69 °C and 64 °C, respectively, and with a stable Δcr H of about 204 and 185 J g−1, respectively, in all melting–crystallizing cycles. Hence, CaPi- and TMB-5-doped erythritol could be used as PCMs and applied in thermal energy storage in which the energy was absorbed at a high temperature and released at a lower but stable temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Sol Energy Mater Sol Cells. 2011;95(10):2703–25.

    Article  CAS  Google Scholar 

  2. Aman MM, Solangi KH, Hossain MS, Badarudin A, Jasmon GB, Mokhlis H, et al. A review of safety, health and environmental (SHE) issues of solar energy system. Renew Sustain Energy Rev. 2015;41:1190–204. doi:10.1016/j.rser.2014.08.086.

    Article  CAS  Google Scholar 

  3. Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91. doi:10.1016/j.rser.2015.04.044.

    Article  CAS  Google Scholar 

  4. Pintaldi S, Perfumo C, Sethuvenkatraman S, White S, Rosengarten G. A review of thermal energy storage technologies and control approaches for solar cooling. Renew Sustain Energy Rev. 2015;41:975–95. doi:10.1016/j.rser.2014.08.062.

    Article  CAS  Google Scholar 

  5. Khadiran T, Hussein MZ, Zainal Z, Rusli R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol Energy Mater Sol Cells. 2015;143:78–98. doi:10.1016/j.solmat.2015.06.039.

    Article  CAS  Google Scholar 

  6. Z-j Duan, H-z Zhang, L-x Sun, Cao Z, Xu F, Y-j Zou, et al. CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2014;115(1):111–7. doi:10.1007/s10973-013-3311-0.

    Article  Google Scholar 

  7. Zhang HZ, Xu QY, Zhao ZM, Zhang J, Sun YJ, Sun LX, et al. Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulation. Sol Energy Mater Sol Cells. 2012;102:93–102. doi:10.1016/j.solmat.2012.03.020.

    Article  CAS  Google Scholar 

  8. Zeng JL, Zheng SH, Yu SB, Zhu FR, Gan J, Zhu L, et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials. Appl Energy. 2014;115:603–9. doi:10.1016/j.apenergy.2013.10.061.

    Article  CAS  Google Scholar 

  9. Zeng JL, Gan J, Zhu FR, Yu SB, Xiao ZL, Yan WP, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;127:122–8. doi:10.1016/j.solmat.2014.04.015.

    Article  CAS  Google Scholar 

  10. Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim. 2015;122(1):3–9. doi:10.1007/s10973-015-4715-9.

    Article  Google Scholar 

  11. Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88. doi:10.1007/s10973-015-4478-3.

    Article  CAS  Google Scholar 

  12. Sádovská G, Honcová P, Pilař R, Oravová L, Honc D. Calorimetric study of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate. J Therm Anal Calorim. 2016;124(1):539–46. doi:10.1007/s10973-015-5159-y.

    Article  Google Scholar 

  13. Hidaka H, Yamazaki M, Yabe M, Kakiuchi H, Ona EP, Kojima Y, et al. New PCMs prepared from erythritol–polyalcohols mixtures for latent heat storage between 80 and 100 °C. J Chem Eng Jpn. 2004;37(9):1155–62. doi:10.1252/jcej.37.1155.

    Article  CAS  Google Scholar 

  14. Adachi T, Daudah D, Tanaka G. Effects of supercooling degree and specimen size on supercooling duration of erythritol. ISIJ Int. 2014;54(12):2790–5. doi:10.2355/isijinternational.54.2790.

    Article  CAS  Google Scholar 

  15. Ona EP, Zhang X, Kyaw K, Watanabe F, Matsuda H, Kakiuchi H, et al. Relaxation of supercooling of erythritol for latent heat storage. J Chem Eng Jpn. 2001;34(3):376–82. doi:10.1252/jcej.34.376.

    Article  CAS  Google Scholar 

  16. Okawa S, Saito A, Minami R. The solidification phenomenon of the supercooled water containing solid particles. Int J Refrig. 2001;24(1):108–17. doi:10.1016/S0140-7007(00)00060-8.

    Article  CAS  Google Scholar 

  17. Ona EP, Zhang X, Ozawa S, Matsuda H, Kakiuchi H, Yabe M, et al. Influence of ultrasonic irradiation on the solidification behavior of erythritol as a PCM. J Chem Eng Jpn. 2002;35(3):290–8. doi:10.1252/jcej.35.290.

    Article  CAS  Google Scholar 

  18. Wei L, Ohsasa K. Supercooling and solidification behavior of phase change material. ISIJ Int. 2010;50(9):1265–9. doi:10.2355/isijinternational.50.1265.

    Article  CAS  Google Scholar 

  19. Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano. 2015;9(12):11699–707. doi:10.1021/acsnano.5b02917.

    Article  CAS  Google Scholar 

  20. Ushak S, Gutierrez A, Barreneche C, Fernandez AI, Grágeda M, Cabeza LF. Reduction of the subcooling of bischofite with the use of nucleatings agents. Solar Energy Mater Sol Cells. 2016;157:1011–8. doi:10.1016/j.solmat.2016.08.015.

    Article  CAS  Google Scholar 

  21. Cui W, Yuan Y, Sun L, Cao X, Yang X. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew Energy. 2016;99:1029–37. doi:10.1016/j.renene.2016.08.001.

    Article  CAS  Google Scholar 

  22. Safari A, Saidur R, Sulaiman FA, Xu Y, Dong J. A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:905–19. doi:10.1016/j.rser.2016.11.272.

    Article  CAS  Google Scholar 

  23. Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M. Supercooling elimination of phase change materials (PCMs) microcapsules. Energy. 2015;87:654–62. doi:10.1016/j.energy.2015.05.033.

    Article  CAS  Google Scholar 

  24. Li JX, Cheung WL. Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol. 1997;3(2):151–6. doi:10.1002/vnl.10182.

    Article  CAS  Google Scholar 

  25. Zhang YF, Chang Y, Li X, Xie D. Nucleation effects of a novel nucleating agent bicyclic [1, 2, 2] heptane di-carboxylate in isotactic polypropylene. J Macromol Sci B. 2010;50(2):266–74. doi:10.1080/00222341003648995.

    Article  Google Scholar 

  26. Liu H, Huo H. Crystal phases, structure, and orientation in isotactic polypropylene after isothermal crystallization under oscillatory shear as a function of nucleation agent. Colloid Polym Sci. 2014;292(4):849–61. doi:10.1007/s00396-013-3133-4.

    Article  CAS  Google Scholar 

  27. Zhang YF, Guo LH, Chen H, Liu BB, Gu YH. Properties and crystallization behaviors of isotactic polypropylene under action of an effective nucleating agent. J Macromol Sci B. 2015;54(9):1019–28. doi:10.1080/00222348.2015.1060404.

    Article  CAS  Google Scholar 

  28. Zhang YF. Comparison of nucleation effects of organic phosphorous and sorbitol derivative nucleating agents in isotactic polypropylene. J Macromol Sci B. 2008;47(6):1188–96. doi:10.1080/00222340802403412.

    Article  CAS  Google Scholar 

  29. Zhang YF, Luo XZ. Effects of benzene-1, 3, 5-tricarboxylate salts on crystallization and melting behaviors of isotactic polypropylene. In: Prushotaman E, editor. 2013 international conference on biological, medical and chemical engineering. Hong Kong; 2013.

  30. Ceccarelli C, Jeffrey GA, McMullan RK. A neutron diffraction refinement of the crystal structure of erythritol at 22.6 K. Acta Crystallogr B. 1980;36(12):3079–307983. doi:10.1107/S0567740880010825.

    Article  Google Scholar 

  31. Lopes Jesus AJ, Nunes SCC, Ramos Silva M, Matos Beja A, Redinha JS. Erythritol: crystal growth from the melt. Int J Pharm. 2010;388(1–2):129–35. doi:10.1016/j.ijpharm.2009.12.043.

    Article  CAS  Google Scholar 

  32. Domalski ES, Hearing ED. Heat capacities and entropies of organic compounds in the condensed phase. Volume III. J Phys Chem Ref Data. 1996;25(1):1–525. doi:10.1063/1.555985.

    Article  CAS  Google Scholar 

  33. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21003014, 21376031, 21501015 and 21275022), the Natural Science Foundation of Hunan Province, China (2017JJ1026, 13JJ3068), Scientific Research Fund of Hunan Provincial Education Department (15B0002) and the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (Changsha University of Science and Technology) (2014CL05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Lan Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, JL., Zhou, L., Zhang, YF. et al. Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material. J Therm Anal Calorim 129, 1291–1299 (2017). https://doi.org/10.1007/s10973-017-6296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6296-2

Keywords

Navigation