Skip to main content
Log in

Thermal decomposition and kinetics of residual rubber seed cake and shell

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid wastes generated during biodiesel production process can be utilized to produce liquid fuel and biochar. Physicochemical properties and non-isothermal decomposition kinetics of rubber seed cake (RSC) and rubber seed shell (RSS) were investigated through proximate analysis, ultimate analysis and thermogravimetric analysis (TG). The TG experiments were conducted in the range of 30–800 °C under nitrogen atmosphere at heating rates of 2, 5 and 10 °C min−1. Active pyrolysis zones of RSC and RSS were broadly observed in three and two stages, respectively. The entire thermal decomposition of RSC (175–589 °C) occurred in wider temperature window compared to RSS (265.2–530 °C). The residual mass and ash content were higher in RSC sample. Model-free kinetic analysis of TG data was performed using various methods. The single value of activation energy obtained by the IKP method was found to be in good agreement with the average values of isoconversional methods. The calorific value of the RSC was found to be slightly higher than that of RSS. The current investigation suggests that both RSC and RSS can be used as feedstock materials for bio-oil and biochar production through pyrolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (min−1)

E :

Activation energy (kJ mol−1)

f(α):

Temperature-independent function of conversion or the reaction model

k :

Rate constant

n :

Order of reaction model

R :

Gas constant (8.314 J mol−1 K−1)

R 2 :

Correlation coefficient

t :

Time (min)

T o :

Initial temperature for the main mass loss (°C)

T f :

Final temperature for the main mass loss (°C)

T p or T max :

Temperature for maximum rate of mass loss (°C)

T 50 :

Temperature at which 50% mass loss of sample (°C)

w A :

Mass of ash obtained after 3 h at 575 °C (g)

w c :

Mass of empty dried crucible after heated for 3 h at 105 °C

w f :

Mass of residue obtained after 7 min at 950 °C (g)

w fr :

Mass of moisture-free sample (g) after heated for 16 h at 105 °C

w o :

Mass of raw sample (g)

w OD :

Mass of oven-dried sample (free MC) (g)

mass%:

Mass loss (%) or mass (%)

mass%f :

Mass loss at end of active pyrolysis (%)

mass%t :

Mass loss at time t (%)

α :

Conversion of biomass (mass %)

β :

Heating rate (°C min−1)

i :

Conversion

j :

Heating rate

k :

Conversion function

References

  1. Zabaniotou AA, Kantarelis EK, Theodoropoulos DC. Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics. Bioresour Technol. 2008;99:3174–81.

    Article  CAS  Google Scholar 

  2. Chutia RS, Kataki R, Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour Technol. 2013;139:66–72.

    Article  CAS  Google Scholar 

  3. Reshad AS, Tiwari P, Goud VV. Extraction of oil from rubber seeds for biodiesel application: optimization of parameters. Fuel. 2015;150:636–44.

    Article  CAS  Google Scholar 

  4. Bankovic-Ilic IB, Stamenkovic OS, Veljkovic VB. Biodiesel production from non-edible plant oils. Renew Sustain Energy Rev. 2012;16:3621–47.

    Article  CAS  Google Scholar 

  5. Kole C, Joshi CP, Shonnard DR. Handbook of bioenergy crop plants. New York: CRC Press; 2012.

    Google Scholar 

  6. Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev. 2013;18:211–45.

    Article  CAS  Google Scholar 

  7. Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR. Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci. 2008;9:169–80.

    Article  CAS  Google Scholar 

  8. Sharma V, Das L, Pradhan RC, Nail SN, Bhatnagar N, Kureel RS. Physical properties of tung seed: an industrial oil yielding crop. Ind Crops Prod. 2011;33:440–4.

    Article  Google Scholar 

  9. Idris SS, Rahman NA, Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blend via thermogravimetric analysis (TGA). Bioresour Technol. 2012;123:581–91.

    Article  CAS  Google Scholar 

  10. Chaiya C, Reubroycharoen P, editors. Production of bio oil from para rubber seed using pyrolysis process. In: 10th eco-energy and materials science and engineering (EMSES2012); 2013.

  11. Mohammad TH, Lakhmiri R, Azmani A, Hassan II. Bio-oil from pyrolysis of castor shell. Int J Basic Appl Sci. 2014;14:1–5.

    Google Scholar 

  12. Torquato LM, Braz CEM, Ribeiro CA, Capela JMV, Crepsi MS. Kinetic study of the co-firing of bagasse–sludge blends. J Therm Anal Calorim. 2015;121:499–507.

    Article  CAS  Google Scholar 

  13. Chin BLF, Yusup S, Al Shoaibi A, Kannan P, Srinivasakannan C, Sulaiman SA. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers Manag. 2014;87:746–53.

    Article  CAS  Google Scholar 

  14. Dickerson T, Soria J. Catalytic fast pyrolysis: a review. Energies. 2013;6:514–38.

    Article  CAS  Google Scholar 

  15. Lappi H, Alen R. Pyrolysis of vegetable oil soaps—palm, olive, rapeseed and castor oils. J Anal Appl Pyrolysis. 2011;91:154–8.

    Article  CAS  Google Scholar 

  16. Onay O, Kockar OM. Slow, fast and flash pyrolysis of rapeseed. Renew Energy. 2003;28:2417–33.

    Article  CAS  Google Scholar 

  17. Ooi Y-S, Zakaria R, Mohamed AR, Bhatia S. Catalytic cracking of used palm oil and palm oil fatty acid mixture for the production of liquid fuel: kinetic modeling. Energy Fuels. 2004;18:1555–61.

    Article  CAS  Google Scholar 

  18. Sensoz S, Angin D. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: Part 1. The effect of pyrolysis parameters on the product yields. Bioresour Technol. 2008;99:5492–7.

    Article  Google Scholar 

  19. Singh RK, Shadangi KP. Liquid fuel from castor seeds by pyrolysis. Fuel. 2011;90:2538–44.

    Article  CAS  Google Scholar 

  20. Chen Z, Hu M, Zhu X, Guo D, Liu S, Hu Z, et al. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour Technol. 2015;192:441–50.

    Article  CAS  Google Scholar 

  21. Zhu F, Feng Q, Xu Y, Liu R, Li K. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119:651–7.

    Article  CAS  Google Scholar 

  22. Mendonca ARV, De Souza SMAG, Valle JAB, de Souza AAU. Thermogravimetric analysis and kinetic study of pyrolysis and combustion of residual textile sludge. J Therm Anal Calorim. 2015;121:807–14.

    Article  Google Scholar 

  23. Levchik SV, Levchik GF, Lesnikovich AI. Analysis and development of effective invariant kinetic parameters finding method based on the non-isothermal data. Thermochim Acta. 1985;92:157–60.

    Article  CAS  Google Scholar 

  24. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  25. Acikalin K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

    Article  CAS  Google Scholar 

  26. Gottipati R, Mishra S. A kinetic study on pyrolysis and combustion characteristics of oil cakes: effect of cellulose and lignin content. J Fuel Chem Technol. 2011;39:265–70.

    Article  CAS  Google Scholar 

  27. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion-time curves. Chemom Intell Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  28. Varma AK, Mandal P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim. 2016;124:487–97.

    Article  CAS  Google Scholar 

  29. Reshad AS, Barman P, Chaudhari AJ, Tiwari P, Kulkarni V, Goud VV, et al. Rubber seed oil methyl ester synthesis, engine performance, and emission characteristics of blends. Energy Fuels. 2015;29:5136–44.

    Article  CAS  Google Scholar 

  30. Zanatta ER, Reinehr TO, Awadallak JA, Kleinubing SJ, Dos Santos JBO, Bariccatti RA, et al. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45.

    Article  CAS  Google Scholar 

  31. Adekiigbe A. Determination of heating value of five economic trees residue as a fuel for biomass heating system. Nat Sci. 2012;10:26–9.

    Google Scholar 

  32. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  33. Flynn JH, Wall LA. General treatment of the thermal gravimetry of polymers. J Res Natl Bur Stand Sect A. 1966;6:487–523.

    Article  Google Scholar 

  34. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  35. Jankovic B, Adnadevic B, Mentus S. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method. Thermochim Acta. 2007;456:48–55.

    Article  CAS  Google Scholar 

  36. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  37. Craido JM. Kinetic analysis of DTG data from master curves. Thermochim Acta. 1978;24:189.

    Google Scholar 

  38. Budrugeac P, Segal E, Perez-Maqueda LA, Criado JM. The use of the IKP method for evaluating the kinetic parameters and the conversion function for the thermal dehydrochlorination of PVC from non-isothermal data. Polym Degrad Stab. 2004;84:311–20.

    Article  CAS  Google Scholar 

  39. Demirbas A. Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources Part A. 2007;29:649–55.

    Article  CAS  Google Scholar 

  40. Garcia R, Pizarro C, Lavin AG, Bueno JL. Characterization of Spanish biomass wastes for energy use. Bioresour Technol. 2012;103:249–58.

    Article  CAS  Google Scholar 

  41. Naik SN, Goud VV, Rout PK, Jacobson K, Dalai AK. Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy. 2010;35:1624–31.

    Article  CAS  Google Scholar 

  42. Sasmal S, Goud VV, Mohanty K. Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass Bioenergy. 2012;45:212–20.

    Article  CAS  Google Scholar 

  43. Abdullah SS, Yusup S, Ahmad MM, Ramli A, Ismail L. Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. Int J Chem Biochem Eng. 2010;3:137–41.

    CAS  Google Scholar 

  44. Yao H, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  45. Sotoko MA, Singh R, Krishna BB, Kumar J, Bhaskar T. Non-isothermal kinetic study of de-oiled seeds cake of African star apple (Chrosophyllum albidum) using thermogravimetry. Helion. 2016. doi:10.1016/j.heliyon.2016.e00172.

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Center for Energy at Indian Institute of Technology Guwahati (IITG) for providing the bomb calorimeter instruments to conduct the sample analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pankaj Tiwari or Vaibhav V. Goud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshad, A.S., Tiwari, P. & Goud, V.V. Thermal decomposition and kinetics of residual rubber seed cake and shell. J Therm Anal Calorim 129, 577–592 (2017). https://doi.org/10.1007/s10973-017-6136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6136-4

Keywords

Navigation